半导体光电, 2023, 44 (3): 478, 网络出版: 2023-11-26  

基于FPGA的激光多普勒微振动检测及信号处理方法

Laser Doppler Microvibration Detection and Signal Processing Based on FPGA
蒲玲 1,2,3,4王华闯 1,2,3,*赵彬 1,2,3,5
作者单位
1 光场调控科学技术全国重点实验室,成都 610209
2 中国科学院空间光电精密测量技术重点实验室,成都 610209
3 中国科学院光电技术研究所,成都 610209
4 中国科学院大学 电子电气与通信工程学院,北京 100049
5 中国科学院大学 光电学院,北京 100049
摘要
为实现微弱振动信号的实时、高精度解调,提出一种基于现场可编程逻辑门阵列(FPGA)的激光多普勒微弱振动检测及信号处理方法。采用全光纤结构的光学系统,振动信号处理系统则以FPGA为核心设计。改进相位解缠模块,在增大振动测量范围的同时,使其能适用于简谐振动与复杂振动。通过模拟振动实验验证了改进后相位解缠模块,且当振幅在80 μm以内时,测量精度在5‰以内。通过对压电陶瓷实际振动目标测振实验,其频率测量误差在1 Hz以内,振幅与频率的测量精度均在1%以内。实验验证了该振动信号处理方案对于扩大振动测量范围与实现高精度目标振动解调的有效性。
Abstract
In order to realize the real-time and high-precision demodulation of microvibration signal, a method of laser Doppler microvibration detection and signal processing based on FPGA is proposed. The optical system with all-fiber structure was adopted, and the vibration signal processing system was designed with FPGA as the core. The phase unwrapping module was improved to enlarge the measuring range of vibration and make it suitable for simple harmonic vibration and complex vibration. The improved phase unwrapping module was verified by simulated vibration experiments. When the amplitude was less than 80 μm, the measurement accuracy was less than 5‰. Through the vibration measurement experiment of the actual vibration target of piezoelectric ceramics, the frequency measurement error was less than 1 Hz, and the measurement accuracy of amplitude and frequency was less than 1%. The experimental results show that the vibration signal processing scheme is effective in expanding the vibration measurement range and realizing high-precision target vibration demodulation.
参考文献

[1] Nozato H, Kokuyama W, Shimoda T, et al. Calibration of laser Doppler vibrometer and laser interferometers in high-frequency regions using electro-optical modulator[J]. Precision Engineering, 2021, 70: 135-144.

[2] 张 驰, 王 顺, 关向雨, 等. 激光多普勒测振技术应用的新进展[J]. 激光与光电子学进展, 2022, 59(19): 85-91.

[3] 王凯旋, 武俊峰, 舒风风. 压电陶瓷频率响应及振动面幅值激光外差测量[J]. 压电与声光, 2021, 43(5): 680-683, 704.

[4] Posada-Roman J E, Jackson D A, Garcia-Souto J A. Variable configuration fiber optic laser Doppler vibrometer system[J]. Photonic Sensors, 2016, 6(2): 97-106.

[5] 张 澍, 李 玉, 卢广锋. 基于双频环形激光器的激光多普勒测振系统研究[J]. 光学学报, 2016, 36(3): 111-116.

[6] 鹿彤彤, 陆彦婷, 杜福嘉, 等. 瞳面干涉激光多普勒测振[J]. 光学学报, 2022, 42(15): 97-103.

[7] Shang J H, He Y, Wang Q, et al. Development of a high-resolution all-fiber homodyne laser Doppler vibrometer[J]. Sensors, 2020, 20(20): 5801.

[8] 崔俊宁, 李 伟, 边星元, 等. 面向大振幅、长周期振动校准的零差正交激光干涉测振方法[J]. 红外与激光工程, 2021, 50(6): 225-232.

[9] Kim M G, Jo K, Kwon H S, et al. Fiber-optic laser Doppler vibrometer to dynamically measure MEMS actuator with in-plane motion[J]. J. of Microelectromechanical Systems, 2009, 18(6): 1365-1370.

[10] 纪新峰, 李宏民, 胡 丹, 等. GaAs相关多普勒放大器的抗静电设计[J]. 兵器装备工程学报, 2021, 42(3): 253-257.

[11] 秦文强. 基于FPGA的激光多普勒测振的研究[D]. 长春: 中国科学院大学, 2018: 35-62.

[12] 晏春回. 激光相干测振信号处理技术研究[D]. 中国科学院大学, 2019: 87-110.

[13] 陈鸿凯. 激光多普勒微振动信号处理技术研究及硬件实现[D]. 中国科学院大学, 2020: 47-58.

[14] 蒲 玲, 王华闯, 赵 彬. 一种激光多普勒测振相位解缠算法及FPGA实现[J/OL]. 激光技术: 1-19[2023-02-02]. http://zz.xue1888.com/kcms/detail/51.1125.TN.20221026.1804.004.html.

[15] 李炳奇. 基于FPGA的目标检测与跟踪[D]. 北京: 北京邮电大学, 2019: 35-38.

[16] 蔡权利, 高 博, 龚 敏. 基于FPGA的CORDIC算法实现[J]. 电子器件, 2018, 41(5): 1242-1246, 1256.

[17] 黄 如, 徐 磊. 一种基于FPGA的CORDIC算法的实现[J]. 电子测量技术, 2018, 41(5): 47-50.

蒲玲, 王华闯, 赵彬. 基于FPGA的激光多普勒微振动检测及信号处理方法[J]. 半导体光电, 2023, 44(3): 478. PU Ling, WANG Huachuang, ZHAO Bin. Laser Doppler Microvibration Detection and Signal Processing Based on FPGA[J]. Semiconductor Optoelectronics, 2023, 44(3): 478.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!