硅酸盐通报, 2023, 42 (6): 1912, 网络出版: 2023-11-20  

蛇纹石混凝土研究应用进展

Research and Application Progress of Serpentine Concrete
作者单位
南华大学土木工程学院, 衡阳 421001
摘要
蛇纹石混凝土具有优异的中子屏蔽性, 国外已将其广泛用于核工业及医疗行业屏蔽中子辐射。我国核事业发展迅速、蛇纹石矿产丰富, 本应对蛇纹石混凝土有大量研究及应用, 但事实上, 蛇纹石混凝土在我国不仅研究较少, 其应用更是远不及国外。基于此, 本文归纳了蛇纹石骨料特性, 对比了三种蛇纹石亚类骨料的物理性质、粒形特征和化学成分, 详细阐述了蛇纹石骨料对混凝土性能的影响, 并分析了当前蛇纹石混凝土研究存在的不足之处, 梳理了蛇纹石混凝土应用现状。最后, 为促进蛇纹石混凝土在我国的进一步研究与应用, 对该领域未来发展进行展望。
Abstract
Serpentine concrete has excellent neutron shielding property, which has been widely used in the nuclear industry and medical industry to shield neutron radiation in foreign countries. With the rapid development of nuclear industry and rich serpentine minerals in China, it should be a lot of research and application of serpentine concrete, however, in fact, serpentine concrete is not only less studied in China, but also its application is far less than abroad. Therefore, the characteristics of serpentine aggregate were summarized, and the physical properties, particle shape characteristics and chemical composition of three kinds of serpentine subspecies aggregate were compared. The influence of serpentine aggregate on concrete property was described in detail, and the shortcomings of current research on serpentine concrete were analyzed. The application status of serpentine concrete was combed. Finally, in order to promote further research and application of serpentine concrete in China, the future development of this field was prospected.
参考文献

[1] 张伟国. 第四代核电站材料问题的挑战[J]. 腐蚀与防护, 2006, 27(11): 541-543.

[2] LI C Y, XIA X B, CAI J, et al. Radiation dose distribution of liquid fueled thorium molten salt reactor[J]. Nuclear Science and Techniques, 2021, 32(2): 1-11.

[3] VASIL’EV G A, VESELKIN A P, EGOROV Y A, et al. Attenuation of reactor radiations by serpentine concrete[J]. Journal of Nuclear Energy Parts A/B Reactor Science and Technology, 1966, 20(5): 390-397.

[4] MARIUSZ D, DARIA J N, KAROLINA B, et al. Influence of serpentinite aggregate on the microstructure and durability of radiation shielding concrete[J]. Construction and Building Materials, 2022, 337: 127536.

[5] 伍崇明. 核工程抗强辐射屏蔽混凝土试验研究[D]. 长沙: 中南大学, 2008.

[6] MASOUD M A, EL-KHAYATT A M, KANSOUH W A, et al. Insights into the effect of the mineralogical composition of serpentine aggregates on the radiation attenuation properties of their concretes[J]. Construction and Building Materials, 2020, 263: 120141.

[7] 朱荣军, 吴光玉, 薛智瑶. 干保护防辐射蛇纹石混凝土施工技术[J]. 建筑施工, 2022, 44(3): 517-519.

[8] JASKULSKI R, GLINICKI M A, KUBISSA W, et al. Application of a non-stationary method in determination of the thermal properties of radiation shielding concrete with heavy and hydrous aggregate[J]. International Journal of Heat and Mass Transfer, 2019, 130: 882-892.

[9] BASHTER I I. Calculation of radiation attenuation coefficients for shielding concretes[J]. Annals of Nuclear Energy, 1997, 24(17): 1389-1401.

[10] YASTREBINSKII R N, BONDARENKO G G, PAVLENKO V I. Attenuation of photon and neutron radiation using iron-magnetite-serpentinite radiation-protective composite[J]. Inorganic Materials: Applied Research, 2017, 8(2): 275-278.

[11] DENISOV A. Radiation changes in serpentinite concretes of “dry” radiation shield in nuclear power plants[J]. IOP Conference Series: Materials Science and Engineering, 2018, 365(3): 032028.

[12] ABREFAH R G, TUFFOUR ACHAMPONG K, AMOAH P. Effectiveness of serpentine concrete as shielding material for neutron source facility using Monte Carlo code[J]. Science and Technology of Nuclear Installations, 2023, 2023: 1-7.

[13] 杨 博, 张振忠, 赵芳霞. 蛇纹石综合利用现状及发展趋势[J]. 材料导报, 2010, 24(增刊1): 381-384.

[14] 张本曰, 刘 丹, 郭 锐, 等. 含镍蛇纹石的综合利用现状[J]. 矿产综合利用, 2020(4): 13-20.

[15] 王开华, 钱伏华. 蛇纹石混凝土在田湾核电站的实验与应用[J]. 中国核电, 2015, 8(1): 38-41.

[16] MASOUD M A, RASHAD A M, SAKR K, et al. Possibility of using different types of Egyptian serpentine as fine and coarse aggregates for concrete production[J]. Materials and Structures, 2020, 53(4): 1-17.

[17] OUDA A S. Development of high-performance heavy density concrete using different aggregates for gamma-ray shielding[J]. Progress in Nuclear Energy, 2015, 79: 48-55.

[18] GLINICKI M A, GOASZEWSKI J, CYGAN G. Formwork pressure of a heavyweight self-compacting concrete mix[J]. Materials (Basel, Switzerland), 2021, 14(6): 1549.

[19] TEKIN I, KOTAN T, YURDAKUL M, et al. Mechanical properties of conventional concrete produced with different type of aggregates in Bayburt region[J]. Journal of Polytechnic, 2017, 20(3): 513-518.

[20] 杨医博, 麦国文, 郭文瑛, 等. 散裂中子源工程防中子辐射重混凝土配合比研究[J]. 工业建筑, 2019, 49(5): 103-108+97.

[21] OTO B, YILDIZ N, AKDEMIR F, et al. Investigation of gamma radiation shielding properties of various ores[J]. Progress in Nuclear Energy, 2015, 85: 391-403.

[22] KUBISSA W, GLINICKI M A. Influence of internal relative humidity and mix design of radiation shielding concrete on air permeability index[J]. Construction and Building Materials, 2017, 147: 352-361.

[23] DARIA J, MARIUSZ D, KAROLINA B, et al. Influence of slag cement on the permeability of concrete for biological shielding structures[J]. Energies, 2020, 13(17): 4582.

[24] ZAYED A M, MASOUD M A, RASHAD A M, et al. Influence of heavyweight aggregates on the physico-mechanical and radiation attenuation properties of serpentine-based concrete[J]. Construction and Building Materials, 2020, 260: 120473.

[25] MASOUD M A, KANSOUH W A, SHAHIEN M G, et al. An experimental investigation on the effects of barite/hematite on the radiation shielding properties of serpentine concretes[J]. Progress in Nuclear Energy, 2020, 120: 103220.

[26] SAYYADI A, MOHAMMADI Y, ADLPARVAR M R. Mechanical, durability, and gamma ray shielding characteristics of heavyweight concrete containing serpentine aggregates and lead waste slag[J]. Advances in Civil Engineering, 2023, 2023: 1-11.

[27] ZAYED A M, MASOUD M A, SHAHIEN M G, et al. Physical, mechanical, and radiation attenuation properties of serpentine concrete containing boric acid[J]. Construction and Building Materials, 2021, 272: 121641.

[28] LEHNER P, GOASZEWSKI J. Relationship of different properties from non-destructive testing of heavy concrete from magnetite and serpentinite[J]. Materials (Basel, Switzerland), 2021, 14(15): 4288.

[29] AKKI T S, BENAYAD S A, MEGAHID R M. Spatial fluxes and energy distributions of reactor fast neutrons in two types of heat resistant concretes[J]. Nuclear Engineering and Design, 1992, 137(1): 77-81.

[30] KANSOUH W A. Radiation distribution through serpentine concrete using local materials and its application as a reactor biological shield[J]. Annals of Nuclear Energy, 2012, 47: 258-263.

[31] BASHTER I I, MAKARIOUS A S, EL-SAYED ABDO A. Investigation of hematite-serpentine and ilmenite-limonite concretes for reactor radiation shielding[J]. Annals of Nuclear Energy, 1996, 23(1): 65-71.

[32] KANY A M I, EL-GOHARY M I, KAMAL S M. Thermal, epithermal and thermalized neutron attenuation properties of ilmenite-serpentine heat resistant concrete shield[J]. Radiation Physics and Chemistry, 1994, 44(1/2): 157-160.

[33] KAUR U, SHARMA J K, SINGH P S, et al. Comparative studies of different concretes on the basis of some photon interaction parameters[J]. Applied Radiation and Isotopes, 2012, 70(1): 233-240.

[34] SHARIFI S, BAGHERI R, SHIRMARDI S P. Comparison of shielding properties for ordinary, barite, serpentine and steel-magnetite concretes using MCNP-4C code and available experimental results[J]. Annals of Nuclear Energy, 2013, 53: 529-534.

[35] TASNIM A, SAHADATH M H, ISLAM KHAN M N. Development of high-density radiation shielding materials containing BaSO4 and investigation of the gamma-ray attenuation properties[J]. Radiation Physics and Chemistry, 2021, 189: 109772.

[36] SINGH V P, KORKUT T, BADIGER N M. Comparison of mass attenuation coefficients of concretes using FLUKA, XCOM and experiment results[J]. Radioprotection, 2018, 53(2): 145-148.

[37] YOUSEF S, ALNASSAR M, NAOOM B, et al. Heat effect on the shielding and strength properties of some local concretes[J]. Progress in Nuclear Energy, 2008, 50(1): 22-26.

[38] ABULFARAJ W H, KAMAL S M. Evaluation of ilmenite serpentine concrete and ordinary concrete as nuclear reactor shielding[J]. Radiation Physics and Chemistry, 1994, 44(1/2): 139-148.

[39] SZYMENDERA L, BLOCISZEWSKI S, WINCEL K, et al. Numerical investigations of concrete attenuation effectiveness in various PWR shield configurations[J]. Nuclear Engineering and Design, 1977, 41(1): 135-143.

[40] BYLKIN B K, EGOROV A L, ZHURBENKO E A, et al. Radiation characteristics of reactor structures after the final shutdown of a nuclear power plant with VVER[J]. Atomic Energy, 2009, 106(1): 73-78.

[41] ABREFAH R G, BIRIKORANG S A, NYARKO B J B, et al. Design of serpentine cask for Ghana research reactor-1 spent nuclear fuel[J]. Progress in Nuclear Energy, 2014, 77: 84-91.

[42] MESBAHI A, AZARPEYVAND A A, SHIRAZI A. Photoneutron production and backscattering in high density concretes used for radiation therapy shielding[J]. Annals of Nuclear Energy, 2011, 38(12): 2752-2756.

杨昭, 石建军, 许新春, 张志恒. 蛇纹石混凝土研究应用进展[J]. 硅酸盐通报, 2023, 42(6): 1912. YANG Zhao, SHI Jianjun, XU Xinchun, ZHANG Zhiheng. Research and Application Progress of Serpentine Concrete[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(6): 1912.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!