硅酸盐通报, 2023, 42 (1): 302, 网络出版: 2023-03-16  

不同旋涂方式对铜锌锡硫硒薄膜及相应器件性能的影响

Effects of Different Spin Coating Modes on Properties of Cu2ZnSn(S,Se)4 Thin Film and Corresponding Devices
作者单位
1 云南师范大学云南省农村能源工程重点实验室, 昆明 650500
2 云南师范大学云南省光电信息技术重点实验室, 昆明 650500
摘要
晶体质量是决定铜锌锡硫硒(Cu2ZnSn(S,Se)4, CZTSSe)吸收层薄膜吸收效率的关键, 旋涂是溶液法制备CZTSSe吸收层的第一步, 因此旋涂方式的选择至关重要。为了探究不同旋涂方式对CZTSSe吸收层薄膜质量和相应器件性能的影响, 分别采用三组不同的旋涂方式制备铜锌锡硫(Cu2ZnSnS4, CZTS)前驱体薄膜及CZTSSe吸收层薄膜, 并利用X射线衍射仪(XRD)、能谱仪(EDS)、显微拉曼光谱仪(Raman)、场发射扫描电子显微镜(FE-SEM)分析了不同旋涂方式对所制备的CZTSSe吸收层薄膜晶体结构、元素成分、相纯度、表面形貌的影响。同时, 采用电流密度-电压(J-V)测试和外量子效率(EQE)测试对CZTSSe吸收层薄膜太阳电池的光电特性进行了表征。结果表明: 旋涂7周期, 且第一周期烘烤之前旋涂2次的效果最好, 所制备的CZTS前驱体薄膜均匀, 无裂纹, CZTSSe吸收层薄膜结晶度更高, 薄膜表面更平整致密, 晶粒大小更均匀, 实现了9.63%的光电转换效率。通过对采用不同旋涂方式制备的器件的性能参数进行统计分析, 得出新的旋涂方式可以提高CZTSSe薄膜太阳电池的可重复性, 为将来可能的大规模商业化应用做铺垫。
Abstract
The crystal quality is the key to determining the absorption efficiency of the copper-zinc-tin-sulfur-selenium (Cu2ZnSn(S,Se)4, CZTSSe) absorber layer thin film, and spin coating is the first step in the preparation of the CZTSSe absorber layer by solution method, therefore, the choice of the spin coating method is crucial. To explore the effects of different spin coating modes on the quality of CZTSSe absorber layer thin film and the performance of corresponding devices, three groups of copper-zinc-tin-sulfur (Cu2ZnSnS4, CZTS) precursor thin films were prepared by different spin coating modes and the effects of different spin coating modes on the crystal structure, element composition, phase purity and surface morphology of CZTSSe absorber layer thin films were analyzed by X-ray diffractometer (XRD), energy dispersive spectrometer (EDS), Renishaw Raman system (Raman), and field emission scanning electron microscope (FE-SEM), separately. At the same time, the photoelectric characteristics of the CZTSSe thin film solar cell were characterized by current density-voltage (J-V) characteristic and external quantum efficiency (EQE) tests. The results show that the spin coating mode with 7 cycles and 2 times spin coatings before each baking in the first cycle result in uniform CZTS precursor thin films without cracks, higher crystallinity of CZTSSe absorber layer thin films, flatter, and denser film surface, and more uniform grain size. As a result, the CZTSSe thin film solar cell with a photoelectric conversion efficiency of 9.63% is realized. Through the statistical analysis of the performance parameters of devices based on different spin coating modes, it concludes that the new spin coating modes can improve the repeatability of CZTSSe thin film solar cells and pave the way for possible large-scale commercial applications in the future.
参考文献

[1] BARKHOUSE D A R, GUNAWAN O, GOKMEN T, et al. Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell[J]. Progress in Photovoltaics: Research and Applications, 2012, 20(1): 6-11.

[2] 崔国楠,杨艳春,李月敏,等.溶液法制备铜锌锡硫硒薄膜太阳能电池的研究进展[J].硅酸盐学报,2021,49(3):483-494.

[3] WINKLER M T, WANG W, GUNAWAN O, et al. Optical designs that improve the efficiency of Cu2ZnSn(Se,S)4 solar cells[J]. Energy & Environmental Science, 2014, 7(3): 1029-1036.

[4] TODOROV T K, REUTER K B, MITZI D B. High-efficiency solar cell with earth-abundant liquid-processed absorber[J]. Advanced Materials, 2010, 22(20): E156-E159.

[5] KI W, HILLHOUSE H W. Earth-abundant element photovoltaics directly from soluble precursors with high yield using a non-toxic solvent[J]. Advanced Energy Materials, 2011, 1(5): 732-735.

[6] WANG W, WINKLER M T, GUNAWAN O, et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency[J]. Advanced Energy Materials, 2014, 4(7): 1301465.

[7] 黄晓梦,许佳雄.周期性前驱体的预硫化处理对Cu2ZnSnS4薄膜的影响[J].材料工程,2020,48(3):155-162.

[8] YANG K J, SON D H, SUNG S J, et al. A band-gap-graded CZTSSe solar cell with 12.3% efficiency[J]. Journal of Materials Chemistry A, 2016, 4(26): 10151-10158.

[9] HE M R, ZHANG X, HUANG J L, et al. High efficiency Cu2ZnSn(S,Se)4 solar cells with shallow LiZn acceptor defects enabled by solution-based Li post-deposition treatment[J]. Advanced Energy Materials, 2021, 11(13): 2003783.

[10] QI Y F, LIU Y, KOU D X, et al. Enhancing grain growth for efficient solution-processed (Cu,Ag)2ZnSn(S,Se)4 solar cells based on acetate precursor[J]. ACS Applied Materials & Interfaces, 2020, 12(12): 14213-14223.

[11] 徐 信,王书荣,马 逊,等.硫化物靶与单质靶制备Cu2ZnSnS4薄膜的比较研究[J].无机材料学报,2019,34(5):529-534.

[12] GONG Y C, ZHU Q, LI B Y, et al. Elemental de-mixing-induced epitaxial kesterite/CdS interface enabling 13%-efficiency kesterite solar cells[J]. Nature Energy, 2022, 7(10): 966-977.

[13] NAKAMURA M, YAMAGUCHI K, KIMOTO Y, et al. Cd-free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%[J]. IEEE Journal of Photovoltaics, 2019, 9(6): 1863-1867.

[14] RAKITIN V V, VARUSHKIN P E, XIN H, et al. The use of the liquid-phase method from DMSO solutions for the synthesis of CZTS thin film materials[J]. J. Connolly. EPJ Photovoltaics, 2019, 10: 6.

[15] GONG Y C, ZHANG Y F, JEDLICKA E, et al. Sn4+ precursor enables 12.4% efficient kesterite solar cell from DMSO solution with open circuit voltage deficit below 0.30 V[J]. Science China Materials, 2021, 64(1): 52-60.

[16] WERNER M, SUTTER-FELLA C M, HAGENDORFER H, et al. Cu2ZnSn(S,Se)4 solar cell absorbers processed from Na-containing solutions in DMSO[J]. Physica Status Solidi (a), 2015, 212(1): 116-120.

[17] LUAN H M, YAO B, LI Y F, et al. Influencing mechanism of cationic ratios on efficiency of Cu2ZnSn(S,Se)4 solar cells fabricated with DMF-based solution approach[J]. Solar Energy Materials and Solar Cells, 2019, 195: 55-62.

[18] LIU F, SHEN S, ZHOU F, et al. Kesterite Cu2ZnSnS4 thin film solar cells by a facile DMF-based solution coating process[J]. Journal of Materials Chemistry C, 2015, 3(41): 10783-10792.

[19] COLLORD A D, HILLHOUSE H W. Germanium alloyed kesterite solar cells with low voltage deficits[J]. Chemistry of Materials, 2016, 28(7): 2067-2073.

[20] SU Z H, LIANG G X, FAN P, et al. Device postannealing enabling over 12% efficient solution-processed Cu2ZnSnS4 solar cells with Cd2+ substitution[J]. Advanced Materials, 2020, 32(32): 2000121.

[21] WU S H, WANG Y Y, HUANG K T, et al. Sulfur-rich sulfurization and solution stability of Cu2ZnSnS4 solar cells fabricated by 2-methoxyethanol-based process[J]. Journal of Alloys and Compounds, 2017, 703: 309-314.

[22] TUAN D A, KE N H, THI KIEU LOAN P, et al. A method to improve the crystal quality of CZTSSe absorber layer[J]. Journal of Sol-Gel Science and Technology, 2018, 87(1):245-253.

[23] STANCHIK A V, GREMENOK V F, JUSKENAS R, et al. Effects of selenization time and temperature on the growth of Cu2ZnSnSe4 thin films on a metal substrate for flexible solar cells[J]. Solar Energy, 2019, 178: 142-149.

[24] PRABHU Y T, RAO K V, KUMAR V S S, et al. X-ray analysis by Williamson-Hall and size-strain plot methods of ZnO nanoparticles with fuel variation[J]. World Journal of Nano Science and Engineering, 2014, 4: 21-28.

[25] WEBER A, MAINZ R, SCHOCK H W. On the Sn loss from thin films of the material system Cu-Zn-Sn-S in high vacuum[J]. Journal of Applied Physics, 2010, 107(1): 013516.

[26] LEE Y S, GERSHON T, GUNAWAN O, et al. Cu2ZnSnSe4 thin-film solar cells by thermal co-evaporation with 11.6% efficiency and improved minority carrier diffusion length[J]. Advanced Energy Materials, 2015, 5(7): 1401372.

余纳, 李秋莲, 胡兴欢, 刘信, 赵永刚, 陈玉飞, 周志能, 王书荣. 不同旋涂方式对铜锌锡硫硒薄膜及相应器件性能的影响[J]. 硅酸盐通报, 2023, 42(1): 302. YU Na, LI Qiulian, HU Xinghuan, LIU Xin, ZHAO Yonggang, CHEN Yufei, ZHOU Zhineng, WANG Shurong. Effects of Different Spin Coating Modes on Properties of Cu2ZnSn(S,Se)4 Thin Film and Corresponding Devices[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(1): 302.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!