激光技术, 2019, 43 (2): 256, 网络出版: 2019-07-10  

一种带宽展宽的等离子体超材料吸波体的设计

Design of a band enhanced absorber based on plasma metamaterial
作者单位
1 南京邮电大学 电子与光学工程、微电子学院, 南京 210023
2 南京邮电大学 电子科学与技术国家级实验教学示范中心, 南京 210023
3 南京邮电大学 信息电子技术国家级虚拟仿真实验教学中心,南京 210023
摘要
为了在TE波下获得带宽可展宽(11GHz~14GHz频带内)且可调谐的吸收曲线, 提出了一种新型超材料吸波体, 其周期性结构单元采用蜂窝状特有的六边形结构。对该吸波体的参量分析图进行了计算, 研究了变量g和d的数值不同时, 对吸波体吸收频带及吸收带宽的影响, 并解释了蚀刻“十”字形结构吸波体带宽展宽的成因。结果表明, 该吸波体在9.17GHz~9.5GHz低频频域的吸收率达到90%以上, 当不同的等离子体谐振区域被激励时, 可以实现吸波体的分时分频域吸收以及改善吸波体的吸收性能, 改变变量g和d可以实现对吸收频带的动态调控; 可以通过在方形结构中蚀刻“十”字形结构的方式拓宽高频频域的吸收带宽, 其在12.08GHz~13.91GHz频域的吸收率高于90%, 改变变量s可以明显展宽吸收频带, 且该吸波体对入射电磁波的角度不敏感。该吸波体的设计思路为拓宽吸波体的吸收带宽提供了一种有效的方法。
Abstract
In order to achieve the absorption curve with broadening (within 11GHz~14GHz band) and tunable bandwidth under TE wave, a new metamaterial absorber was proposed whose periodic structural unit adopted honeycomb-shaped hexagonal structure. The parametric analysis chart of the absorber was calculated. The effects of variables g and d on absorbing band and absorbing bandwidth were studied. The cause of bandwidth broadening of the etched cross-shaped absorber was also explained. The results show that, absorption rate of the absorber in the low frequency domain at 9.17GHz~9.5GHz is over 90%. When different plasma resonance regions are excited, the time-frequency domain absorption of the absorber can be realized. And the absorptive capacity of the absorber can be improved. By changing the variables g and d, the dynamic control of the absorption band can be realized. The absorption bandwidth in the high frequency domain can be widened by etching cross-shaped structure in a square structure. Its absorption rate in the frequency domain of 12.08GHz~13.91GHz is higher than 90%. By changing the variable s, the absorption band can be obviously widened. The absorber is insensitive to the angle of incident electromagnetic wave. The design idea provides an effective way to broaden the absorption bandwidth of absorbers.
参考文献

[1] HATAKEEYYAMA K, INUI T. Electromagnetic wave absorber using ferrite absorbing material dispersed with short metal fibers[J]. IEEE Transactions on Magnetics, 1984, 20(5):1261-1263.

[2] LIMA U R, NASAR M C, NASAR R S, et al. Ni-Zn nanoferrite for radar-absorbing material[J]. Journal of Magnetism & Magnetic Materials, 2008, 320(10):1666-1670.

[3] MARIN P, CORTINAD, HERNANDO A. Electromagnetic wave absorbing material based on magnetic microwires[J]. IEEE Transactions on Magnetics, 2008, 44(11):3934-3937.

[4] HODGKINSON I, WU Q H. Inorganic chiral optical materials[J]. Advanced Materials, 2001, 13(12/13):889-897.

[5] SIONCKE S, VERBIEST T, PERSOOONS A. Second-order nonlinear optical properties of chiral materials[J]. Materials Science and Engineering, 2003, R42(5/6):115-155.

[6] SHIM J M, SHAN S C, KOMRLJ A, et al. Harnessing instabilities for design of soft reconfigurable auxetic/chiral materials[J]. Soft Matter, 2013, 9(34):8198-8202.

[7] WANG J F, QU Sh B, MA H, et al. Tunable planar left-handed metamaterials based on split-ring resonator pairs[C]//IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications. New York,USA:IEEE,2015:1-3.

[8] ZHOU H, WANG C, PENG H. A novel double-incidence and multi-band left-handed metamaterials composed of double Z-shaped structure[J]. Journal of Materials Science Materials in Electronics, 2016, 27(3):2534-2544.

[9] LIU S H, GUO L X, LI J Ch. Left-handed metamaterials based on only modified circular electric resonators[J]. Journal of Modern Optics, 2016, 63(21):2220-2225.

[10] RYBIN O, SHULGA S. Profile miniaturization and performance improvement of a rectangular patch antenna using magnetic metamaterial substrates[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2016, 26(3):254-261.

[11] ZHANG Y, TANG H, YAO Ch, et al. Experiments on adjustable magnetic metamaterials applied in megahertz wireless power transmission[J]. AIP Advances, 2015, 5(1):2075-2084.

[12] KIRIUSHECHKINA S V, KOTEI’NIKOVA O A, RADKOVSKAYA A A. Peculiarities of propagation of electroinductive waves in magnetic metamaterials[J]. Physics of Wave Phenomena, 2017, 25(2):101-106.

[13] TARKHANAYAN R H. Effective permittivity and permeability of magnetic metamaterials with periodic array of 2-D electronic layers in quantum hall effect conditions[J]. Journal of Electromagnetic Waves & Applications, 2008, 22(7):1005-1012.

[14] WANG R L, WANG J F, LI Y F, et al. Dual-band suspended stripline filter based on electric metamaterials[J]. Microwave & Optical Technology Letters, 2017, 59(9):2297-2302.

[15] WEI Y Sh, SU AN, XU J Y, et al. Characteristics of dual-channel optical filter in quaternary heterostructure photonic crystal [J]. Laser Technology, 2018, 42(2): 212-212(in Chinese).

[16] ZHANG X D, CHEN N, NIE F K, et al. Dispersion characteristics analysis of photonic crystal fibers based on structure parameters and filling modes [J]. Laser Technology, 2018, 42(1):48-52 (in Chinese).

[17] LANDY N I, SAIUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402.

[18] ZHANG H, ZHANG H F, YANG J, et al. Design of an absorber based on plasma metamaterial [J]. Laser Technology, 2018, 42(5): 704-708(in Chinese).

[19] WU D, LIU Y, LI R, et al. Infrared perfect ultra-narrow band absorber as plasmonic sensor [J]. Nanoscale Research Letters, 2016, 11(1):483-491.

[20] WANG B X, WANG L L, WANG G Z, et al. Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber[J]. IEEE Photonics Technology Letters, 2014, 26(2): 111-114.

[21] LI L, WANG J, DU H, et al. A band enhanced metamaterial absorber based on E-shaped all-dielectric resonators[J]. AIP Advances, 2015, 5(1): 017147.

[22] DING F, CUI Y, GE X, et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters, 2012, 100(10):103506.

[23] CHENG Y Zh, WANG Y, NIE Y, et al. Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements[J]. Journal of Applied Physics, 2012, 111(4): 044902.

[24] KONG X K, LI H M, BIAN B R, et al. Microwave tunneling in heterostructures with electromagnetically induced transparency-like metamaterials based on solid state plasma[J]. The European Physical Journal Applied Physics, 2016, 74(3): 30801.

[25] KONG X K, MO J J, YU Zh Y, et al. Reconfigurable designs for electromagnetically induced transparency in solid state plasma metamaterials with multiple transmission windows[J]. International Journal of Modern Physics, 2016, B30(14): 1650070.

[26] BALANIS C A. Antenna theory: analysis and design[M].Hoboken,New Jersey,USA:John Wiley & Sons,1982:989-990.

张浩, 马宇, 章海锋, 杨靖, 刘佳轩. 一种带宽展宽的等离子体超材料吸波体的设计[J]. 激光技术, 2019, 43(2): 256. ZHANG Hao, MA Yu, ZHANG Haifeng, YANG Jing, LIU Jiaxuan. Design of a band enhanced absorber based on plasma metamaterial[J]. Laser Technology, 2019, 43(2): 256.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!