光学学报, 2007, 27 (2): 323, 网络出版: 2007-02-26   

超短激光脉冲在不同色散参量光子晶体光纤中传输的数值模拟

Numerical Simulation on Propagation of Ultra-Short Laser Pulse in Photonic Crystal Fibers with Different Group Velocity Dispersion Parameters
作者单位
中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800
摘要
为了使得数值模拟更为精确, 采用广义非线性薛定谔方程(GNSE)描述超短激光脉冲在光子晶体光纤中的传输演化过程, 并利用二阶分步傅里叶方法通过求解方程, 数值计算了相同脉宽和能量的超短脉冲在不同色散参量的光子晶体光纤中非线性传输和超连续谱的产生。比较了超短脉冲在光纤不同色散区传输时, 高阶色散和非线性效应对超连续谱的产生以及对脉冲波形演化的影响。结果表明, 相对于超短脉冲中心波长位于光子晶体光纤的正常和反常色散区, 可以相应获得短波波段和长波波段的超连续谱输出, 当超短脉冲中心波长位于零色散波长点时, 通过色散和非线性效应的联合作用, 更易于产生全波长段的平坦超连续谱。
Abstract
For a more accurate numerical simulation, the generalized nonlinear Schrdinger equation is adopted to describe the evolution of ultra-short laser pulse propagating in photonic crystal fibers, and solved by using the second-order split-step Fourier method. The nonlinear propagation of ultra-short pulse with the same pulse width and energy, and generation of super-continuum spectrum are numerically simulated in different dispersion regions of photonic crystal fibers. In the different dispersion regions, the influence of high-order dispersion and nonlinear effects on the generation of super-continuum spectrum and pulse profile evolution are analyzed. The results show that, when the central wavelength of the input pulse is in the normal or abnormal dispersion regions, the super-continuum spectrum of short-wave band or long-wave band is obtained respectively (respect to the central wavelength). When the central wavelength is at the zero dispersion wavelength point of photonic crystal fibers, a flat super-continuum spectrum of the whole wave-band can be generated by combining the influence of high-order dispersion and nonlinear effect.
参考文献

[1] . A. Birks, J. C. Knight, P. St. J. Russell et al.. Endlessly single-mode photonics crystal fiber[J]. Opt. Lett., 1997, 22(13): 961-963.

[2] . W. Nicholson, M. F. Yan, P. Wisk et al.. All-fiber, octave-spanning supercontinuum[J]. Opt. Lett., 2003, 28(8): 643-645.

[3] . Coen, A. H. L. Chau, R. Leonhardt et al.. White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber[J]. Opt. Lett., 2001, 26(17): 1356-1358.

[4] . Norris, Herbert G. Winful. Optimization of supercontinuum generation in photonic crystal fibers for pulse compression[J]. Opt. Lett., 2003, 28(7): 546-548.

[5] . . Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths[J]. Opt. Express, 2004, 12(6): 1045-1054.

[6] . L. Hu, C. Y. Wang, L. Chai. Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber[J]. Opt. Express, 2004, 12(9): 1932-1937.

[7] . L. Gaeta. Nonlinear propagation and continuum generation in microstructured optical fibers[J]. Opt. Lett., 2002, 27(11): 924-926.

[8] . V. Mamyshev, S. V. Chemikov. Ultrashort-pulse propagation in optical fibers[J]. Opt. Lett., 1990, 15(19): 1076-1078.

[9] . . Numerical simulation on ultra short laser pulses propagating in micro-structure fibers[J]. Acta Physica Sinica, 2005, 54(4): 1599-1606.

[10] . Nonlinear propagation and supercontinuum generation of a femto-second pulse in photonic crystal fibers[J]. Acta Physica Sinica, 2004, 53(6): 1826-1830.

[11] G. P. Agrawal. Nonlinear Fiber Optics[M]. 3rd ed., San Diego: Academic Press, 2001. 120~121

[12] . V. Husakou, J. Herrmann. Super-continuuum generation of higher-order solitons by fission in photonic crystal fibers[J]. Phys. Rev. Lett., 2001, 87(20): 203901-1.

[13] . Herrmann, U. Griebner, N. Zhavoronkov et al.. Experimental evidence for supercontinuum generation by fission of high order solitons in phtonic fibers[J]. Phys. Rev. Lett., 2002, 88(17): 173901-1.

[14] . Liu, C. Xu, W. H. Knox. Soliton self-frequency shift in a short tapered air-silica microstructure fiber[J]. Opt. Lett., 2001, 26(6): 358-360.

[15] . K. Ranka, R. S. Windeler, A. J. Stentz. Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800 nm[J]. Opt. Lett., 2000, 25(1): 25-27.

[16] . K. A. Wai, H. H. Chen, Y. C. Lee. Radiations by “solitons” at the zero group-dispersion wavelength of single-mode optical fibers[J]. Phys. Rev. A, 1990, 41(1): 426-436.

[17] . H. Knox, R. L. Frok, M. C. Downer et al.. Optical pulse compression to 8 fs at a 5-kHz repetition rate[J]. Appl. Phys. Lett., 1985, 46(12): 1120-1121.

[18] . J. Tomlinson, R. H. Stolen, A. M. Johnson. Optical wave breaking of pulses in nonlinear optical fibers[J]. Opt. Lett., 1985, 10(9): 457-458.

周冰, 姜永亮, 陈晓伟, 冷雨欣, 李儒新, 徐至展. 超短激光脉冲在不同色散参量光子晶体光纤中传输的数值模拟[J]. 光学学报, 2007, 27(2): 323. 周冰, 姜永亮, 陈晓伟, 冷雨欣, 李儒新, 徐至展. Numerical Simulation on Propagation of Ultra-Short Laser Pulse in Photonic Crystal Fibers with Different Group Velocity Dispersion Parameters[J]. Acta Optica Sinica, 2007, 27(2): 323.

本文已被 13 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!