应用激光, 2023, 43 (5): 0064, 网络出版: 2024-02-02  

激光重熔功率对镍基自润滑涂层组织与性能的影响

Effect of Laser Remelting Power on Microstructure and Properties of Nickel-Based Self-Lubricating Coatings
作者单位
1 陕西理工大学机械工程学院,陕西 汉中 723001
2 陕西省工业自动化重点实验室,陕西 汉中 723001
摘要
为研究重熔功率对Inconel 718镍基自润滑涂层组织与性能的影响规律,采用激光熔覆技术在27SiMn钢板材上制备Inconel 718熔覆涂层,选用三种不同的激光功率二次重熔熔覆试样。使用超景深显微镜观察熔覆层表面形貌及金相组织,使用显微硬度计检测熔覆层的显微硬度,使用销-盘式摩擦磨损试验机检验及评价熔覆层的摩擦磨损性能。结果表明,激光重熔后熔覆层的晶粒得到明显的细化,随着重熔功率的增加,熔覆层晶粒尺寸先减小后增大,重熔功率为1 260 W时,熔覆层顶部晶粒尺寸最均匀细小;重熔后熔覆层的硬度均有较大提高,相较未重熔试件硬度最高可提升22%;从磨损形貌来看,试样的磨损机理主要为磨粒磨损,经重熔后试样的摩擦系数及磨损失重均得到了明显的降低。分析摩擦磨损试验数据可知,重熔功率在1 260 W时,试件的耐磨性能最好。
Abstract
In order to study the influence of remelting power on the microstructure and properties of Inconel 718 nickel-based self-lubricating coating, laser cladding technology is adopted to prepare Inconel 718 cladding coating on 27SiMn steel plate, and three different laser power remelting cladding samples are selected. The surface morphology and metallographic structure of the cladding layer are observed by super depth of field microscope, the microhardness of the cladding layer is measured by microhardness tester, and the friction and wear properties of the cladding layer are tested and evaluated by pin-disk friction and wear testing machine. The results show that the grain size of the cladding layer is obviously refined after laser remelting. With the increase of remelting power, the grain size of the cladding layer decreases firstly and then increases. When the remelting power is 1 260 W, the grain size at the top of the cladding layer is the most uniform and fine. After remelting, the hardness of the cladding layer is greatly improved, and the hardness can be increased by 22% compared with that of the specimen without remelting. From the wear morphology, the wear mechanism of the sample is mainly abrasive wear, and the friction coefficient and wear weight loss of the sample are obviously reduced after remelting. The analysis of friction and wear test data shows that the specimen has the best wear resistance when the remelting power is 1 260 W.
参考文献

[1] 申泽慧, 孙荣禄. 激光熔覆镍基自润滑涂层的性能[J]. 金属热处理, 2015, 40(9): 64-68.SHEN Z H, SUN R L. Performance of Ni base self lubricating coating by laser cladding[J]. Heat Treatment of Metals, 2015, 40(9): 64-68.

[2] 王志文, 庄宿国, 刘海青, 等. 激光熔覆自润滑复合涂层研究进展及发展趋势[J]. 表面技术, 2018, 47(5): 104-112.WANG Z W, ZHUANG S G, LIU H Q, et al. Research progress and development trend of self-lubricating composite coatings by laser cladding[J]. Surface Technology, 2018, 47(5): 104-112.

[3] 郭卫, 张亚普, 柴蓉霞, 等. 27SiMn钢表面激光熔覆304不锈钢数值模拟及实验研究[J]. 应用激光, 2019, 39(1): 35-41.GUO W, ZHANG Y P, CHAI R X, et al. Numerical simulation and experimental study of laser cladding 304 stainless steel on 27SiMn steel[J]. Applied Laser, 2019, 39(1): 35-41.

[4] 翁昌琦, 闫华, 张培磊, 等. Cr12MoV钢表面激光熔覆Ni35/MoS2/LaF3·CeF3涂层的研究[J]. 热加工工艺, 2017, 46(10): 168-171.WENG C Q, YAN H, ZHANG P L, et al. Research on laser cladding Ni35/MoS2/LaF3·CeF3 coatings on Cr12MoV steel surface[J]. Hot Working Technology, 2017, 46(10): 168-171.

[5] 王勇, 方敏, 张治民. HVAF制备27SiMn钢WC涂层沉积机理研究[J]. 热加工工艺, 2020, 49(6): 106-108.WANG Y, FANG M, ZHANG Z M. Study on deposition mechanism of WC coating on 27SiMn steel prepared by HVAF[J]. Hot Working Technology, 2020, 49(6): 106-108.

[6] 吴军, 金杰, 朱冬冬, 等. TiC添加量对高能激光熔覆Inconel718基陶瓷涂层显微组织和摩擦磨损性能的影响[J]. 表面技术, 2021, 50(9): 225-235.WU J, JIN J, ZHU D D, et al. Effect of TiC content on microstructure, friction and wear properties of Inconel718 based ceramic coatings prepared by high energy laser cladding[J]. Surface Technology, 2021, 50(9): 225-235.

[7] 李尧, 杨浩, 贺红伟, 等. 后处理对激光重熔Inconel 718合金组织及性能的影响[J/OL]. 中国有色金属学报, 2021: 1-14. (2021-10-28). https://kns.cnki.net/kcms/detail/43.1238.TG.20211028.1304.004.html.LI Y, YANG H, HE H W, et al. Effect of post treatment on microstructure and microhardness of Inconel 718 superalloy fabricated by laser remelting[J/OL]. The Chinese Journal of Nonferrous Metals, 2021: 1-14. (2021-10-28). https://kns.cnki.net/kcms/detail/43.1238.TG.20211028.1304.004.html.

[8] 叶秀, 武美萍, 缪小进, 等. 激光重熔对Ti-6Al-4V选区激光熔化成形质量的影响[J]. 表面技术, 2021, 50(8): 301-310.YE X, WU M P, MIAO X J, et al. Influence of laser remelting on forming quality of Ti-6Al-4V fabricated by selective laser melting[J]. Surface Technology, 2021, 50(8): 301-310.

[9] 王建刚, 高士友, 陈旭升, 等. 激光重熔A356铝合金表面的力学性能[J]. 中国激光, 2020, 47(4): 0402002.WANG J G, GAO S Y, CHEN X S, et al. Mechanical properties of A356 aluminum alloy after laser surface remelting[J]. Chinese Journal of Lasers, 2020, 47(4): 0402002.

[10] 郁雯霞, 雷玉成. 304不锈钢表面激光重熔Fe-Cr涂层组织和冲蚀性能分析[J]. 应用激光, 2020, 40(5): 795-799.YU W X, LEI Y C. Microstructure and erosion performance of laser remelting Fe-Cr coating on 304 stainless steel[J]. Applied Laser, 2020, 40(5): 795-799.

[11] 张蕾涛, 李海涛, 贾润楠, 等. 激光重熔Ni60/50%WC复合涂层的制备及性能[J]. 金属热处理, 2021, 46(5): 229-234.ZHANG L T, LI H T, JIA R N, et al. Preparation and properties of laser remelted Ni60/50%WC composite coating[J]. Heat Treatment of Metals, 2021, 46(5): 229-234.

[12] WANG H Z, CHENG Y H, YANG J Y, et al. Influence of laser remelting on organization, mechanical properties and corrosion resistance of Fe-based amorphous composite coating[J]. Surface and Coatings Technology, 2021, 414: 127081.

[13] ZHANG J C, HUANG T W, SHEN Z L, et al. Enhanced structural refinement on eutectic medium-entropy alloy CrCoNiNb0.48 by laser remelting[J]. Materials Letters, 2021, 304: 130710.

[14] XI W C, SONG B X, WANG Z X, et al. Effect of laser re-melting on geometry and mechanical properties of YCF102 cladding layer[J]. Surface and Coatings Technology, 2021, 408: 126789.

王家胜, 舒林森. 激光重熔功率对镍基自润滑涂层组织与性能的影响[J]. 应用激光, 2023, 43(5): 0064. Wang Jiasheng, Shu Linsen. Effect of Laser Remelting Power on Microstructure and Properties of Nickel-Based Self-Lubricating Coatings[J]. APPLIED LASER, 2023, 43(5): 0064.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!