中国激光, 2024, 51 (2): 0210001, 网络出版: 2024-01-04  

基底均匀和梯度掺杂下EBCMOS电荷收集效率的优化模拟

Simulation of Charge Collection Efficiency Optimization for EBCMOS with Uniform and Gradient Doping
焦岗成 1宋德 1,2,*闫磊 1肖超 1李野 1,2陈卫军 1,2,**
作者单位
1 微光夜视技术重点实验室,陕西 西安 710065
2 长春理工大学物理学院,吉林 长春 130022
摘要
为获得高增益的电子轰击型CMOS(EBCMOS)成像器件,根据载流子输运理论,采用蒙特卡罗方法,研究了EBCMOS基底在不同掺杂方式和结构参数下的电荷收集效率。结果表明:当基底均匀掺杂时,减小掺杂浓度、降低基底厚度及缩小近贴距离可以有效提高电荷收集效率;当基底梯度掺杂时,减小重掺杂浓度区域的范围,可以有效提高电荷收集效率。仿真优化后器件的电荷收集效率最高可达到86.28%,为国产EBCMOS器件的研制提供了理论支撑。
Abstract
Objective

As a new type of low-light night vision imaging device technology, electron-bombarded complementary metal-oxide-semiconductor (EBCMOS) technology can realize photoelectric conversion, electric signal enhancement, digital processing, and target output below an illumination of 10-4 lx. It has the advantages of a small size, light weight, high gain, low noise, and fast response. Therefore, it has wide application prospects in military equipment, astronomical observation, remote-sensing mapping, and space detection. In the EBCMOS working process, the photoelectrons generated from the photocathode by the external photoelectric effect are accelerated by the negative high voltage between the photocathode and the surface of the electron-sensitive CMOS and bombard the P-type semiconductor substrate to obtain the gain from the secondary electrons in the multiplier layer. Because of the concentration difference of the minority carriers in the P-type substrate, the secondary electrons diffuse to the pixel region, are collected by the photodiode in the active pixel circuit, and are finally read out by the MOS transistor amplification circuit. Therefore, to improve the gain characteristics of EBCMOS devices, the design and optimization of the structural parameters of EBCMOS substrates and the building of corresponding theoretical models are important issues for researchers. In this study, secondary electron charge collection in EBCMOS substrates under different doping modes and structural parameters was investigated, laying a theoretical and technical foundation for the preparation of high-gain EBCMOS electron multiplier layers.

Methods

According to carrier transport theory and the Monte Carlo simulation algorithm, a theoretical model of the entire electronic trajectory of an EBCMOS substrate was established. Electron charge collection in the electron multiplier layer under uniform and gradient doping of the P-type substrate was simulated, and transport calculation models of photogenerated electrons and multiplier electrons in the proximity region of the EBCMOS were established. Various EBCMOS structural models were designed to simulate the electronic motions under the condition of different doping concentrations, substrate thicknesses, proximity distances, and gradient doping structures, and the influence of different structural parameters on the electron charge collection of the electronic multiplier layer was analyzed.

Results and Discussions

For a uniformly doped substrate, with an increase in doping concentration, the recombination rate of the carrier increases, the lifetime of minority carriers decreases, and the number of secondary electrons collected in the pixel region decreases, which causes the charge collection efficiency to decrease continuously (Fig. 4). When the substrate doping concentration reaches 1019 cm-3, the charge collection efficiency approaches 0—that is, the secondary electrons are completely recombined. As the thickness of the substrate increases, the diffusion range of the secondary electrons increases (Fig. 5), and the scattering radius of the secondary electrons collected in the pixel region increases, which is not conducive to improving the charge collection efficiency (Fig. 6). Therefore, a thinner P-type substrate treatment is necessary to obtain a higher charge collection efficiency. As the proximity distance between the cathode surface and the EBCMOS substrate increases, the initial energy obtained by the incident electrons decreases, and the number of secondary electrons that generate multiplication decreases, thereby reducing the number of electrons collected in the pixel area and reducing the charge collection efficiency (Fig. 8). When the substrate is divided into two sections for gradient doping, the range of secondary electron diffusion in the diffusion and depletion regions is obviously reduced, indicating that the electron focusing effect of gradient doping is better than that of uniform doping (Fig. 10). The built-in electric field distribution generated by gradient doping can provide an additional drift speed for secondary electrons in the direction of their movement, shortening the diffusion time of electrons in the diffusion region and obtaining a higher charge collection efficiency. The charge collection efficiency can reach a maximum of 86.28% when the width of the surface heavily doped region is 2 μm.

Conclusions

Based on the carrier transport mechanism in semiconductor physics and the Monte Carlo algorithm, the electronic trajectory of incident optoelectrons in EBCMOS is theoretically simulated. The electronic trajectory in the device is determined based on the simulation results, and the factors affecting the efficiency of charge collection are analyzed. The results show that the charge collection efficiency of the EBCMOS increases with the decreases in substrate doping concentration, substrate thickness, and proximity distance. The gradient doping of the substrate clearly improves the charge collection efficiency. The optimized gradient doping structure model achieves a charge collection efficiency of 86.28%. The results provide theoretical support for the fabrication of high-gain EBCMOS devices.

1 引言

电子轰击CMOS(EBCMOS)是在10-4 lx照度以下可以对目标实现光电转换、增强、处理的数字化微光成像器件1-2。其基本工作原理是:光电阴极产生的光电子经高压电场加速后轰击背部减薄CMOS芯片基底表面,电子轰击半导体基底产生二次倍增电子,形成电子增益,通过读出电路对电子增益进行放大,读出相应的电信号。因为不需要像增强电子耦合器件(ICCD)那样通过光学系统耦合将光信息转换为电信息,所以EBCMOS可以降低器件的重量,并易于实现高分辨率成像3。同时,由于外光电效应型器件光阴极的热噪声比内光电效应型器件的低,因而光电转换过程中的信噪比较高,能够在无需制冷的情况下实现单光子探测。目前商业化的EBCMOS主要应用在便携式和机载军用夜视设备上,这是数字化微光成像器件的一个重要发展方向4,同时它在单光子探测、天文探测和生物成像等领域具有广阔的应用前景5

电荷收集效率(CCE,在公式中记为CCE)是反映二次电子收集能力的一个重要指标,对器件增益有较大影响。电子倍增层的增益G的计算公式6

G=CCE×E0-EdW

式中:CCE为电荷收集效率;E0为入射电子能量;Ed为电子经过死层损失的能量;W为入射电子产生一个电子空穴对所消耗的能量,Si材料的W为3.6 eV。可以发现,增益与电荷收集效率成正比,采取适当措施提高电荷收集效率可以有效地提升器件的增益性能。2009年,Dominjon等7测量了EBCMOS电子倍增层的电荷收集效率和死层复合电子的数量(以X光作为入射光源),并通过曲线拟合的方式得到基底均匀掺杂下的电荷收集效率为32%,梯度掺杂下的电荷收集效率为60%。2011年,Barbier等8通过实验对比证实了EBCMOS在均匀掺杂下的电荷收集效率最高可达32%,在梯度掺杂下的电荷收集效率最高可达66%。2016年,Hirvonen等9研究了电子空穴对在器件内的产生过程以及加速电压与倍增电子数量之间的关系。2017年,本课题组10在国内率先研究了EBCMOS不同钝化层厚度对入射光电子能量损失的影响,同时对65 μm厚的电子倍增层进行了增益测试实验,实验结果显示:随着入射电子能量增大,电子倍增层的增益增大。2018年,刘虎林等11研制了一种紫外光响应的EBCMOS器件,并实现了40 mlx照度下的探测。2020年,Bai等12建立了局部的电子运动轨迹模型,并通过实验对模型进行了验证。同年,王巍等1对器件中光电阴极、BSB-CMOS及阳极电极的相对几何位置,以及阳极电极形状、BSB-CMOS背部表面处理等进行了理论模拟,设计了一种有利于EBCMOS电子聚焦的电子倍增层。然而,上述关于电荷收集效率的研究大多是通过实验测得或是对器件中的电子运动轨迹进行局部模拟获得的,整体的电子运动轨迹模型以及如何提高电荷收集效率目前还未见报道。

笔者建立了EBCMOS基底整体的电子运动轨迹理论模型,并对P型基底均匀掺杂和梯度掺杂两种情况下电子倍增层的电荷收集效率进行了模拟研究。根据载流子输运理论,采用蒙特卡罗模拟算法建立了EBCMOS近贴区内光生电子和电子倍增层内倍增电子输运过程的计算模型。同时,设计了EBCMOS的多种结构模型,模拟了不同掺杂浓度、基底厚度、近贴距离、梯度掺杂结构下的电子运动情况,分析了不同结构参数对电子倍增层电荷收集效率的影响。模拟结果可为具体的实验提供理论支撑。

2 理论模型

图1为EBCMOS结构示意图。采用GaAs光电阴极作为阴极面,通过蒙特卡罗方法获得光电子的方位角φ和方向角θφ是电子入射方向向量投影到xoy平面后与x轴正向的夹角;θ是方向向量与z轴正向的夹角,即初始光生电子运动方向与光阴极法线方向的夹角。

图 1. EBCMOS结构图

Fig. 1. Structure of EBCMOS

下载图片 查看所有图片

由于光生电子的运动是随机的,方向角θ=arccos1-R,方位角ϕ=2πR,其中,R为(0,1)范围内均匀分布的随机数。初始能量分布采用了较为符合实际的Beta分布13。假设近贴系统为平板电容器模型,则近贴区内光生电子的运动轨迹方程为

x=v0sinθcosϕty=v0sinθsinϕtz=v0cosθt+qUt2/(2md)

式中:v0为光生电子入射的初速度;d为光阴极与电子倍增层之间的近贴距离;m为电子质量;U为近贴电压;q为电荷量;t为时间。

背部减薄CMOS芯片表面有一层死层14。电子轰击电子倍增层时首先经过死层(结构如图2所示),电子在死层中运动会损失能量,电子在死层中的运动可以分为弹性散射和非弹性散射15。当电子发生弹性散射时,能量损失可以忽略不计,只考虑散射方向对运动轨迹的影响。本文采用卢瑟福散射截面,则低能条件下的入射电子散射截面的计算公式16

图 2. BSB-CMOS结构图

Fig. 2. Structure of BSB-CMOS

下载图片 查看所有图片

σ=3×10-18Z1.7Ε+0.005Z1.7E0.5+0.0007Z2/E0.5

式中:Z为原子序数;E为电子能量。利用蒙特卡罗法可以获得入射电子的散射角α=arccos[1-2βR/(1+β-R)]以及方位角β=2πR

散射步长表示电子经过一次弹性散射所走过的路程,假设其平均自由程λ与散射截面之间的关系为

λ=AσNAρ

式中:A为相对原子质量;NA为阿伏伽德罗常数;ρ为介质密度。因每次散射是随机过程,故而用蒙特卡罗方法得到散射步长的随机值,即Λ=-λlnR。由于非弹性散射对电子运动方向的影响很小,其散射角度比弹性散射影响下的散射角度小2个数量级,所以只需要考虑电子非弹性散射时损失的能量。在低能条件下,入射电子能量损失公式可以采用Joy等17提出的修正公式,即

dEds=7.85×104EρiCiZiAiln1.166E+kJiJi

式中:Ji为电离能;Ci为原子浓度;k为修正系数。入射电子穿过死层后,会与硅原子发生碰撞,硅原子吸收入射电子的能量,产生电子空穴对,其中每产生一个电子空穴对大约消耗3.6 eV的能量18-19。然后,利用Bethe能量损失公式计算出电子在每一次散射步长内所损失的能量,就可以获得每一次散射的倍增电子数目。

倍增后的电子存在一定的浓度梯度,而由于电子的无规则热运动,电子从浓度高的地方向浓度低的地方扩散,也就是从P型基底向N阱一侧运动,并最终被N阱收集。电子的扩散方向是各向同性的,所以扩散的方向角满足γ=arccos2R-1,方位角公式满足η=2πR。倍增电子的扩散过程可视为稳态非平衡载流子的注入,可以通过稳态扩散方程获得电子的扩散速度20,即

vd=-Dnr+DnLn

式中:Ln为扩散长度,Ln=DnτnDn为电子扩散系数;r电子距离扩散中心的长度;τn为少子寿命。xyz方向上的电子运动速度可分别表示为

vx=vdsinγcosηvy=vdsinγsinηvz=vdcosγ

若在EBCMOS的基底区域进行梯度掺杂,则掺杂区域内的电场21-22满足

E=-kBTqlnN0/NsD

式中:N0为初始掺杂浓度;Ns为表面掺杂浓度;D为掺杂深度;kB为玻尔兹曼常数;T为热力学温度。梯度掺杂区域的掺杂浓度23满足

Nx=N0exp-bx,b=lnN0/NsD

耗尽区内P区和N区之间的电场满足

Ex=-qNaεx+xp

式中:Na为受主杂质浓度;ε为介电常数;xp为P区的宽度。在耗尽区,电子既会受到扩散速度的影响,又会受到漂移速度的影响。通过计算可知,扩散速度是漂移速度的百分之一甚至是千分之一。所以,在耗尽区,电子的扩散速度可以忽略不计。电子经过耗尽区后,最终会落在像素区内,这里假设5×5像素区为电子有效收集区域。

由于电子在扩散过程中会发生复合,所以在收集到的电子中需要除去复合后的电子,所以实际收集到的电子数19

         Ncollection=Narrivalexp-t1τ1exp-tiτi                   exp-tmτm

式中:τ为少子寿命;t为电子在扩散过程中所经历的时间。那么,电荷收集效率可以用像素区内收集到的电子数与倍增后所有电子数的比值24来表示,即

CCE=NcollectionNmultiplication

3 模拟结果与分析

3.1 基底均匀掺杂下电荷收集效率的影响因素

图3为基底均匀掺杂下的电子运动轨迹,模拟参数如下:近贴距离为1000 μm,近贴电压为2700 V,基底厚度为10 μm,死层厚度为100 nm,掺杂浓度Na分别在1016~1019 cm-3之间选取了10组数。由图3可知不同掺杂浓度下的电子运动轨迹相似,但是由图4所示的不同掺杂浓度下的电荷收集效率可以看出:当掺杂浓度为1016 cm-3时,EBCMOS的电荷收集效率最大;随着掺杂浓度增加,电荷收集效率不断降低。因此,掺杂浓度提高后,N阱内收集到的电子数目减少,其原因是掺杂浓度的增加会导致载流子寿命降低,进而导致5×5像素区内收集到的电子数目减少,由式(12)可知会引起电荷收集效率的降低。

图 3. 电子运动轨迹图

Fig. 3. Diagram of electron motion trajectories

下载图片 查看所有图片

图 4. 不同掺杂浓度下的电荷收集效率

Fig. 4. Charge collection efficiency for different doping concentrations

下载图片 查看所有图片

图5为均匀掺杂时不同基底厚度下电子在像素区内的散点图。模拟参数如下:近贴距离为1000 μm,死层厚度为100 nm,掺杂浓度为1015 cm-3,近贴电压为2700 V,基底厚度h在5~35 μm之间选取7组数据。图6是不同基底厚度下对应的电荷收集效率。对比散点图以及电荷收集效率结果可以发现:当基底厚度为5 μm时,电子的扩散半径较小,像素区内电子的分布较为集中,电荷收集效率最高;随着基底厚度增加,电子扩散半径逐渐增大,电荷收集效率逐渐降低。产生这种情况的主要原因是随着电子扩散范围增加,5×5像素区内收集到的电子数目减少。同时,由于基底厚度增加,扩散时间延长,被复合的电子数量增加。因此,若要获得较高的电荷收集效率,就需要对P型基底进行减薄处理。

图 5. 不同基底厚度下电子在像素区内的散点图。(a)5 μm;(b)15 μm;(c)25 μm;(d)35 μm

Fig. 5. Scatter diagram of electronics in pixel area for different substrate thicknesses. (a) 5 μm; (b) 15 μm; (c) 25 μm; (d) 35 μm

下载图片 查看所有图片

图 6. 不同基底厚度下的电荷收集效率

Fig. 6. Charge collection efficiency for different substrate thicknesses

下载图片 查看所有图片

图7为基底均匀掺杂时不同近贴距离下电子在像素区的散点图。模拟参数如下:掺杂浓度为1015 cm3,近贴电压为2700 V,基底厚度为10 μm,死层厚度为100 nm,近贴距离在500~5000 μm之间选取10组数据。图8中给出了不同近贴距离下电子倍增层内的电荷收集效率。对比散点图以及电荷收集效率可以发现:当近贴距离大于1000 μm时,电子扩散半径明显增大;随着近贴距离增大,电荷收集效率逐渐降低。这主要是因为近贴距离的增加导致电子扩散半径增大,从而导致5×5像素区内收集到的电子数目减少25

图 7. 不同近贴距离下电子在像素区内的散点图。(a)5000 μm;(b)3000 μm;(c)1000 μm;(d)500 μm

Fig. 7. Scatter diagram of electronics in pixel area for different proximity distances. (a) 5000 μm; (b) 3000 μm; (c) 1000 μm; (d) 500 μm

下载图片 查看所有图片

图 8. 不同近贴距离下的电荷收集效率

Fig. 8. Charge collection efficiency for different proximity distances

下载图片 查看所有图片

3.2 基底梯度掺杂下电荷收集效率的影响因素

为了模拟分析基底梯度掺杂结构变化对电荷收集效率的影响,笔者设计了梯度掺杂下电子倍增层结构模型,如图9所示。其中,基底厚度为10 μm,耗尽区厚度为0.35 μm,A位置处的掺杂浓度为1019 cm-3,C位置处的掺杂浓度为1016 cm-3,B为两段不同梯度掺杂区域的交界,该位置处的掺杂浓度为1018 cm-3。设B到基底初始位置的距离为w,分别取w为2、4、6、8 μm,分别模拟4种梯度掺杂结构下的电子运动轨迹和电荷收集效率。

图 9. 梯度掺杂结构模型

Fig. 9. Gradient doping structure model

下载图片 查看所有图片

模拟分析采用的参数如下:近贴距离为1000 μm,近贴电压为2700 V,基底厚度为10 μm,死层厚度为100 nm。图10为梯度掺杂下电子在EBCMOS内的运动轨迹图以及电子运动轨迹的局部放大图。梯度掺杂后,电子的扩散范围明显缩小,说明梯度掺杂下的电子聚焦效果明显优于均匀掺杂下的;近贴区内的电子运动轨迹相似,其原因是近贴距离和近贴电压值相同。图11给出了4种掺杂结构下的电荷收集效率,可以发现4个掺杂结构模型下的电荷收集效率全部大于50%。这说明梯度掺杂产生的内建电场可以给电子在运动方向提供一个额外的漂移速度,缩小电子在扩散区的扩散范围,从而实现更高的电荷收集效率。同时,由式(8)式(9)可知,表面掺杂范围会影响内建电场强度,掺杂范围越小,表面处的电场强度越大。值得注意的是,w=2 μm时的电荷收集效率最高,为86.28%。因此,在梯度掺杂下,减小高掺杂浓度区域的范围可以减少载流子复合的数目,从而实现更高的二次电子收集能力。

图 10. 梯度掺杂下的电子运动轨迹图

Fig. 10. Diagram of electron motion trajectories under gradient doping

下载图片 查看所有图片

图 11. 不同结构模型下的电荷收集效率

Fig. 11. Charge collection efficiency under different structural models

下载图片 查看所有图片

4 结论

笔者依据半导体理论中的载流子输运机理并结合蒙特卡罗算法对入射光电子在EBCMOS中的电子运动轨迹进行了理论模拟,并根据模拟结果确定了器件中的电子运动轨迹,同时分析了电荷收集效率的影响因素。研究结果表明:EBCMOS的电荷收集效率随着基底掺杂浓度的降低、基底厚度的减少、近贴距离的缩短而提高。基底梯度掺杂能够明显提高电荷收集效率。优化后的梯度掺杂结构模型可使电荷收集效率达到86.28%。本文研究结果可以为高增益EBCMOS器件的制备提供理论支撑。

参考文献

[1] Wang W, Li Y, Chen W J, et al. Simulation of the electrostatic distribution in the proximity focusing structure of an EBCMOS[J]. IEEE Photonics Journal, 2020, 12(3): 6901210.

[2] AebiV W, CostelloK A, ArcuniP W, et al. EBAPS: next generation, low power, digital night vision[C]∥OPTRO 2005 International Symposium, May 9-12, 2005, Paris, France. Paris: OPTRO, 2005: 1-10.

[3] 严毅赟, 钱芸生, 张景智, 等. 电子轰击有源像素传感器光谱响应测试系统设计[J]. 激光与光电子学进展, 2022, 59(13): 1304001.

    Yan Y Y, Qian Y S, Zhang J Z, et al. Design of spectral response test system for electron bombardment active pixel sensor[J]. Laser & Optoelectronics Progress, 2022, 59(13): 1304001.

[4] BarbierR, DepasseP, BaudotJ, et al. First results from the development of a new generation of hybrid photon detector: EBCMOS[M]∥ Barbier R, Depasse P, Baudot J, et al. First results from the development of a new generation of hybrid photon detector: EBCMOS[M]∥Barone M, Gaddi A, Leroy C, et al. Astroparticle, particle and space physics, detectors and medical physics applications. Singapore: World Scientific, 2008: 23-27.

[5] AebiV W, BoyleJ J. Electron bombarded active pixel sensor: US 6285018B1[P/OL]. 2001-09-04. https:∥patents.google.com/patent/US6285018B1/en.

[6] 徐子皓. EBCMOS电荷收集效率模拟研究[J]. 传感器技术与应用, 2022(2): 187-192.

    Xu Z H. Simulation study of EBCMOS charge collection efficiency[J]. Journal of Sensor Technology and Application, 2022(2): 187-192.

[7] DominjonA, ChabanatE, DepasseP, et al. LUSIPHER large-scale ultra-fast single photo-electron tracker[C]∥2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), October 24-November 1, 2009, Orlando, FL, USA. New York: IEEE Press, 2010: 1527-1531.

[8] Barbier R, Cajgfinger T, Calabria P, et al. A single-photon sensitive ebCMOS camera: the LUSIPHER prototype[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 648(1): 266-274.

[9] Hirvonen L M, Suhling K. Photon counting imaging with an electron-bombarded pixel image sensor[J]. Sensors, 2016, 16(5): 617.

[10] 张海舟, 母一宁, 王连锴, 等. EBCMOS微光成像器件的研究[J]. 真空科学与技术学报, 2017, 37(10): 991-996.

    Zhang H Z, Mu Y N, Wang L K, et al. Impact of passivation layer on photoelectron energy loss in EBCMOS low-light-level imaging device: a simulation and experimental study[J]. Chinese Journal of Vacuum Science and Technology, 2017, 37(10): 991-996.

[11] 刘虎林, 王兴, 田进寿, 等. 高分辨紫外电子轰击互补金属氧化物半导体器件的实验研究[J]. 物理学报, 2018, 67(1): 014209.

    Liu H L, Wang X, Tian J S, et al. High resolution electron bombareded complementary metal oxide semiconductor sensor for ultraviolet detection[J]. Acta Physica Sinica, 2018, 67(1): 014209.

[12] Bai J Z, Bai Y L, Hou X, et al. The analysis of electron scattering among multiplying layer in EBAPS using optimized Monte Carlo method[J]. Modern Physics Letters B, 2020, 34(34): 2050398.

[13] Yan L, Shi F, Cheng Y J, et al. Performance of low-light-level night vision device affected by backscattered electron from ion barrier film[J]. Proceedings of SPIE, 2012, 8419: 84192Y.

[14] 乔凯, 王生凯, 程宏昌, 等. 表面钝化膜对BCMOS传感器电子敏感特性影响的实验研究[J]. 红外与激光工程, 2020, 49(4): 0418002.

    Qiao K, Wang S K, Cheng H C, et al. Experimental study on the electron sensitivity of BCMOS sensor influenced by surface passivation film[J]. Infrared and Laser Engineering, 2020, 49(4): 0418002.

[15] 吴自勤. 低能电子在固体中的散射[J]. 电子显微学报, 1982, 1(2): 34-43.

    Wu Z Q. Scattering of low energy electrons in solids[J]. Journal of Chinese Electron Microscopy Society, 1982, 1(2): 34-43.

[16] Browning R, Li T Z, Chui B, et al. Empirical forms for the electron/atom elastic scattering cross sections from 0.1 to 30 keV[J]. Journal of Applied Physics, 1994, 76(4): 2016-2022.

[17] Joy D C, Luo S. An empirical stopping power relationship for low-energy electrons[J]. Scanning, 1989, 11(4): 176-180.

[18] Fiebiger J R, Muller R S. Pair-production energies in silicon and germanium bombarded with low-energy electrons[J]. Journal of Applied Physics, 1972, 43(7): 3202-3207.

[19] Hirvonen L M, Petrášek Z, Suhling K. Wide-field time-correlated single photon counting (TCSPC) microscopy with time resolution below the frame exposure time[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 787: 1-5.

[20] 宋德, 石峰, 李野. 基底均匀掺杂下EBAPS电荷收集效率的模拟研究[J]. 红外与激光工程, 2016, 45(2): 0203002.

    Song D, Shi F, Li Y. Simulation of charge collection efficiency for EBAPS with uniformly doped substrate[J]. Infrared and Laser Engineering, 2016, 45(2): 0203002.

[21] 张益军, 牛军, 赵静, 等. 指数掺杂结构对透射式GaAs光电阴极量子效率的影响研究[J]. 物理学报, 2011, 60(6): 067301.

    Zhang Y J, Niu J, Zhao J, et al. Effect of exponential-doping structure on quantum yield of transmission-mode GaAs photocathodes[J]. Acta Physica Sinica, 2011, 60(6): 067301.

[22] 邹继军, 常本康, 杨智. 指数掺杂GaAs光电阴极量子效率的理论计算[J]. 物理学报, 2007, 56(5): 2992-2997.

    Zou J J, Chang B K, Yang Z. Theoretical calculation of quantum yield for exponential-doping GaAs photocathodes[J]. Acta Physica Sinica, 2007, 56(5): 2992-2997.

[23] 田佳峰, 宋德, 陈卫军, 等. 电子倍增层表层掺杂分布对EBCMOS电荷收集效率的影响[J]. 半导体光电, 2021, 42(1): 45-51, 105.

    Tian J F, Song D, Chen W J, et al. Influence of doping distribution in electron multiplier surface layer on charge collection efficiency of EBCMOS[J]. Semiconductor Optoelectronics, 2021, 42(1): 45-51, 105.

[24] 宋园园, 宋德, 李野, 等. 钝化层及P型基底结构优化对EBAPS电荷收集效率的影响研究[J]. 中国激光, 2023, 18(9): 1803001.

    Song Y Y, Song D, Li Y, et al. Influence of passivation layer and P-type substrate structure optimization on charge collection efficiency of EBAPS[J]. Chinese Journal of Lasers, 2023, 18(9): 1803001.

[25] 王巍, 李野, 陈卫军, 等. EBCMOS近贴聚焦结构及电场分布对电子运动轨迹的影响[J]. 中国光学, 2020, 13(4): 713-721.

    Wang W, Li Y, Chen W J, et al. Influence of proximity focusing structure and electric field distribution on electron trajectory in the EBCMOS[J]. Chinese Optics, 2020, 13(4): 713-721.

焦岗成, 宋德, 闫磊, 肖超, 李野, 陈卫军. 基底均匀和梯度掺杂下EBCMOS电荷收集效率的优化模拟[J]. 中国激光, 2024, 51(2): 0210001. Gangcheng Jiao, De Song, Lei Yan, Chao Xiao, Ye Li, Weijun Chen. Simulation of Charge Collection Efficiency Optimization for EBCMOS with Uniform and Gradient Doping[J]. Chinese Journal of Lasers, 2024, 51(2): 0210001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!