人工晶体学报, 2023, 52 (11): 2014, 网络出版: 2023-12-05  

Li原子和Ca原子修饰VO2单层储氢性能的第一性原理研究

First-Principles Study on Hydrogen Storage Performance of Li- and Ca-Decorated VO2 Monolayer
作者单位
宁夏大学物理学院, 银川 750021
摘要
具有高储氢容量和可逆储氢性能的新材料的开发对氢能的大规模利用至关重要。基于第一性原理计算, 研究了Li原子和Ca原子单独修饰和共修饰VO2单层体系的H2分子存储性能。结果表明Li原子和Ca原子均能稳定结合在VO2单层表面而不产生金属团簇。单个Li原子和Ca原子分别最多可稳定吸附3个和6个H2分子, 且H2分子平均吸附能均大于0.20 eV/H2。吸附体系差分电荷和态密度分析结果表明, 氢分子的极化机制以及氢分子与金属原子间的轨道杂化作用是H2分子在金属原子周围稳定吸附的主要原因。Li原子修饰体系的储氢质量密度随着Li原子覆盖度的增加而逐渐增加, 而Ca原子修饰体系的储氢质量密度在低金属覆盖度时较高; Li/Ca共修饰体系的储氢质量密度有所增加, 其储氢质量密度为5.00%(质量分数)。此外, 考虑了不同温度和压强条件下储氢体系的稳定性。
Abstract
The exploitation of new hydrogen storage materials with high-capacity and reversible performance could play a very important role in the large-scale utilization of hydrogen as an energy source. The hydrogen storage performances of Li and Ca atoms decorated as well as Li/Ca co-decorated VO2 monolayer system were comprehensively investigated based on first-principles calculations. The metal atoms are stably adsorbed on the surface of the VO2 monolayer without forming metal clusters. Three and six hydrogen molecules can be absorbed by a Li atom and Ca atom, respectively, and its average adsorption energy is larger than 0.20 eV/H2. Charge density differences and density of states of H2 adsorbed systems were analyzed, and the results reveal that both the polarization mechanism and orbital hybridization are responsible for the adsorption of hydrogen molecules. The hydrogen storage capacity of the Li-decorated system increases with the increase of Li coverage, while that of Ca-decorated system is high only in lower Ca coverage. Moreover, Li/Ca co-decoration can effectively increase the hydrogen storage capacity of the system, its hydrogen storage mass density is 5.00% (mass fraction). Finally, the influence of temperature and pressure on the stability of hydrogen adsorption system is studied.
参考文献

[1] LI J T. Oxygen evolution reaction in energy conversion and storage: design strategies under and beyond the energy scaling relationship[J]. Nano-Micro Letters, 2022, 14(1): 112.

[2] FAYE O, SZPUNAR J, EDUOK U. A critical review on the current technologies for the generation, storage, and transportation of hydrogen[J]. International Journal of Hydrogen Energy, 2022, 47(29): 13771-13802.

[3] SAKINTUNA B, LAMARI-DARKRIM F, HIRSCHER M. Metal hydride materials for solid hydrogen storage: a review[J]. International Journal of Hydrogen Energy, 2007, 32(9): 1121-1140.

[4] 闫敏艳, 宫长伟, 张 鹤, 等. Ti掺杂对Li-Mg-N-H材料储氢性能影响的第一性原理研究[J]. 人工晶体学报, 2022, 51(2): 297-303.

[5] MEDURI S, NANDANAVANAM J. Materials for hydrogen storage at room temperature--an overview[J]. Materials Today: Proceedings, 2023, 72: 1-8.

[6] WANG L F, YANG R T. Hydrogen storage on carbon-based adsorbents and storage at ambient temperature by hydrogen spillover[J]. Catalysis Reviews, 2010, 52(4): 411-461.

[7] YOON M, YANG S Y, HICKE C, et al. Calcium as the superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage[J]. Physical Review Letters, 2008, 100(20): 206806.

[8] ZHENG N, YANG S L, XU H X, et al. A DFT study of the enhanced hydrogen storage performance of the Li-decorated graphene nanoribbons[J]. Vacuum, 2020, 171: 109011.

[9] 胡明明, 赵高峰. 锂改性点缺陷石墨烯储氢性能的第一性原理研究[J]. 原子与分子物理学报, 2019, 36(3): 443-451.

[10] 安 博. Ca修饰石墨烯储氢性能的第一性原理研究[J]. 人工晶体学报, 2015, 44(1): 256-261.

[11] 元丽华, 巩纪军, 王道斌, 等. 碱金属修饰的多孔石墨烯的储氢性能[J]. 物理学报, 2020, 69(6): 068802.

[12] PUTUNGAN D B, LIN S H, WEI C M, et al. Li adsorption, hydrogen storage and dissociation using monolayer MoS2: an ab initio random structure searching approach[J]. Physical Chemistry Chemical Physics, 2015, 17(17): 11367-11374.

[13] SONG N H, WANG Y S, GAO H Y, et al. Electric field improved hydrogen storage of Ca-decorated monolayer MoS2[J]. Physics Letters A, 2015, 379(9): 815-819.

[14] TANG Z K, LI X B, ZHANG D Y, et al. Two-dimensional square-pyramidal VO2 with tunable electronic properties[J]. Journal of Materials Chemistry C, 2015, 3(13): 3189-3197.

[15] LIN L, HU C C, XU S W, et al. First-principle investigation of CO adsorption on Pd-loaded VO2 monolayer[J]. Materials Today Communications, 2022, 32: 103681.

[16] ATACA C, 瘙塁AHIN H, CIRACI S. Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure[J]. The Journal of Physical Chemistry C, 2012, 116(16): 8983-8999.

[17] WANG Y S, SONG N H, SONG X Y, et al. Metallic VO2 monolayer as an anode material for Li, Na, K, Mg or Ca ion storage: a first-principle study[J]. RSC Advances, 2018, 8(20): 10848-10854.

[18] KRESSE G, FURTHMLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, Condensed Matter, 1996, 54(16): 11169-11186.

[19] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775.

[20] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.

[21] GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. Journal of Computational Chemistry, 2006, 27(15): 1787-1799.

[22] 王丽春, 张志才, 马良财, 等. Rb原子修饰缺陷h-BN单层储氢性能的第一性原理研究[J]. 原子与分子物理学报, 2022, 39(6): 151-158.

[23] MA L C, WANG L C, SUN Y R, et al. First-principles study of hydrogen storage on Ca-decorated defective boron nitride nanosheets[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 128: 114588.

[24] NIU J, RAO B K, JENA P. Binding of hydrogen molecules by a transition-metal ion[J]. Physical Review Letters, 1992, 68(15): 2277-2280.

[25] KUBAS G J. Metal-dihydrogen and σ-bond coordination: the consummate extension of the Dewar-Chatt-Duncanson model for metal-olefin π bonding[J]. Journal of Organometallic Chemistry, 2001, 635(1/2): 37-68.

[26] WANG Y S, JI Y, LI M, et al. Li and Ca co-decorated carbon nitride nanostructures as high-capacity hydrogen storage media[J]. Journal of Applied Physics, 2011, 110(9): 094311.

[27] WU Q, SHI M M, HUANG X, et al. A first-principles study of Li and Na co-decorated T4, 4, 4-graphyne for hydrogen storage[J]. International Journal of Hydrogen Energy, 2021, 46(11): 8104-8112.

[28] YUAN L H, WANG D B, GONG J J, et al. First-principles study of V-decorated porous graphene for hydrogen storage[J]. Chemical Physics Letters, 2019, 726: 57-61.

[29] CHEN X F, WANG L, ZHANG W T, et al. Ca-decorated borophene as potential candidates for hydrogen storage: a first-principle study[J]. International Journal of Hydrogen Energy, 2017, 42(31): 20036-20045.

[30] CHASE JR M W. NIST-JANAF thermochemical tables fourth edition[J]. Journal of Physical and Chemical Reference Data Monograph,1998.

[31] 张志才, 马良财. Li原子修饰缺陷蓝磷单层储氢性能的第一性原理研究[J]. 四川大学学报(自然科学版), 2022, 59(5): 104-112.

[32] WANG Y, LI A, WANG K A, et al. Reversible hydrogen storage of multi-wall carbon nanotubes doped with atomically dispersed lithium[J]. Journal of Materials Chemistry, 2010, 20(31): 6490-6494.

[33] REYHANI A, MORTAZAVI S Z, MIRERSHADI S, et al. Hydrogen storage in decorated multiwalled carbon nanotubes by Ca, Co, Fe, Ni, and Pd nanoparticles under ambient conditions[J]. The Journal of Physical Chemistry C, 2011, 115(14): 6994-7001.

[34] MEHRABI M, PARVIN P, REYHANI A, et al. Hydrogen storage in multi-walled carbon nanotubes decorated with palladium nanoparticles using laser ablation/chemical reduction methods[J]. Materials Research Express, 2017, 4(9): 095030.

[35] GU J, ZHANG X P, FU L, et al. Study on the hydrogen storage properties of the dual active metals Ni and Al doped graphene composites[J]. International Journal of Hydrogen Energy, 2019, 44(12): 6036-6044.

侯茵茵, 马良财. Li原子和Ca原子修饰VO2单层储氢性能的第一性原理研究[J]. 人工晶体学报, 2023, 52(11): 2014. HOU Yinyin, MA Liangcai. First-Principles Study on Hydrogen Storage Performance of Li- and Ca-Decorated VO2 Monolayer[J]. Journal of Synthetic Crystals, 2023, 52(11): 2014.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!