激光技术, 2019, 43 (4): 574, 网络出版: 2019-07-10   

基于波段选择改进的高光谱端元提取方法

An improved method of hyperspectral endmember extraction based on band selection
作者单位
陆军工程大学石家庄校区 电子与光学工程系, 石家庄 050003
摘要
为了解决传统N-FINDR算法降维时破坏像元光谱曲线的物理意义这个问题, 采用波段选择方法中的最佳指数法代替特征提取, 改进N-FINDR算法的降维方式; 利用模拟和真实高光谱数据进行实验, 分别用改进的N-FINDR算法与其它两种算法提取端元, 并用全约束最小二乘法解混。结果表明, 改进的N-FINDR算法的解混精度更高, 用时更少。用波段选择代替特征提取改进降维方式, 保留了光谱曲线的物理意义, 在N-FINDR算法中是可行的。
Abstract
In order to solve the problem of destroying the physical meaning of spectral curve of pixels in dimension reduction of traditional N-FINDR algorithm, the best exponential method of band selection was used instead of feature extraction. The dimension reduction method of N-FINDR algorithm was improved. Experiments were carried out using the simulated and real hyperspectral data. The improved N-FINDR algorithm and other two algorithms were used to extract the terminal elements respectively. Full constrained least squares method was used to solve the mixing problem. The results show that the improved N-FINDR algorithm has higher precision and uses less time. It is feasible to use band selection instead of feature extraction to improve the dimension reduction method and retain the physical meaning of spectral curve in N-FINDR algorithm.
参考文献

[1] LIU X. Research of camouflage target detection and evaluation in hyperspectral image [D].Shijiazhuang: Mechanical Engineering College, 2014: 1-2(in Chinese).

[2] SHAO T. Research on target recognition in hyperspectral imagery based on spectral information [D]. Harbin: Harbin Institute of Technology, 2010: 4-7(in Chinese).

[3] BIONCAS-DIAS J M, PLZAZ A, DOBIGEON N, et al. Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches[J]. IEEE Journal of Selected Topics Applied Earth Observation and Remote Sensing, 2012, 5(2): 354-379.

[4] IORDACHE M D, BIOUCAS-DIAS J M, PLAZA A. Total variation regularization for sparse hyperspectral unmixing[J]. IEEE Transaction Geoscience Remote Sensing, 2012, 50(11): 4484-4502.

[5] FAN L, LIN X, ALEXANDER W, et al. Feature extraction for hyperspectral imagery via ensemble localized manifold learning [J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12): 2486-2490.

[6] ZHU G K, HUANG Y C, LEI J S, et al. Unsupervised hyperspectral band selection by dominant set extraction [J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1): 227-619.

[7] WANG K, QU H M. Anomaly detection method based on improved minimum noise fraction transformation [J]. Laser Technology, 2015, 39(3): 381-385(in Chinese).

[8] WANG Q, YANG G, ZHANG J F, et al. Unsupervised band selection algorithm combined with K-L divergence and mutual information [J]. Laser Technology, 2018, 42(3): 417-421(in Chinese).

[9] LI J, YANG M H, WU K J. Band selection based hyperspectral remote sensing image classification [J]. Journal of Geomatics, 2012, 37(2): 41-44(in Chinese).

[10] YAN Y, HUA W Sh, LIU X, et al. Research of hyperspectral unmixing methods[J].Laser Technology, 2018, 42(5): 692-698(in Chinese).

[11] WINTER M E. N-FINDR: an algorithm for fast autonomous spectral endmember determination in hyperspectral data[J].Proceedings of the SPIE, 1999,3753: 266-275.

[12] CHANG C I, WU C C, LIU W M. A new growing method for simplex-based endmember extraction algorithm [J]. IEEE Transaction on Geoscience and Remote Sensing, 2006, 44(10): 2804-2819.

[13] WANG L G, DENG L Q, ZHANG J. Endmember selection algorithm based on linear least square support vector machines[J].Spectroscopy and Spectral Analysis, 2010, 30(3): 743-747 (in Ch-inese).

[14] XIONG W, CHANG C I,WU C C. Fast algorithms to implement N-FINDR for hyperspectral endmember extraction[J].IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing,2011,4(3): 545-564.

[15] CHANG C I, DU Q. Estimation of number of spectrally distinct signal in hyperspectral imagery [J].IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(3): 608-619.

[16] MARTIN G, PLAZA A. Region-based spatial preprocessing for endmember extraction and spectral unmixing [J]. IEEE Transaction on Geoscience and Remote Sensing, 2011, 8(4): 745-749.

[17] YAN Y, HUA W Sh, CUI Z H, et al. Classification volume for hyperspectral endmember extraction[J]. Laser Optoelectronics Progress, 2018, 55(9): 093004(in Chinese).

[18] GENG X, ZHAO Y, WANG F, et al. A new volume formula for a simplex and its application to endmember extraction for hyperspectral image analysis [J]. International Journal of Remote Sensing, 2010, 31(4): 1027-1035.

[19] GONG W J, DONG A G, HAN X. Band selection algorithm for hyperspectral images based on band index [J]. Laser Technology, 2017, 41(4): 507-510(in Chinese).

[20] REN X D, LEI W H, GU Y, et al. Improved band selection method for hyperspectral imagery [J]. Computer Science, 2015, 42(11): 162-168(in Chinese).

[21] PLAZA A, PABLO M, ROSA P, et al. A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(3): 650-663.

[22] DANIEL C H, CHEIN I C. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery [J]. IEEE Transaction on Geoscience and Remote Sensing, 2001, 39(3): 529-545.

严阳, 华文深, 张炎, 崔子浩, 刘恂. 基于波段选择改进的高光谱端元提取方法[J]. 激光技术, 2019, 43(4): 574. YAN Yang, HUA Wenshen, ZHANG Yan, CUI Zihao, LIU Xun. An improved method of hyperspectral endmember extraction based on band selection[J]. Laser Technology, 2019, 43(4): 574.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!