人工晶体学报, 2023, 52 (2): 261, 网络出版: 2023-03-18  

边界载荷对层级椭圆穿孔板超材料带隙的影响

Effect of Boundary Load on Bandgaps of Elliptical Perforated-Hierarchical Panel Metamaterials
作者单位
上海工程技术大学机械与汽车工程学院,上海 201620
摘要
为探索边界载荷对超材料带隙特性的影响,本文构建了一种层级椭圆穿孔板超材料,将载荷直接作用于结构的边界,采用有限元法研究了边界载荷导致结构变形所引起的带隙变化。建立了3个层级椭圆穿孔板有限元模型,将三维椭圆穿孔板简化为二维平面结构,以便于研究结构的面内带隙特性。分析了有无边界载荷作用时层级椭圆穿孔板的带隙特性、传输损耗和带隙边界对应的振型。结果表明,引入层级设计可降低带隙频率,施加边界载荷可打开更多完全带隙和方向带隙,从而更好地抑制弹性波传播,为穿孔板类超材料设计提供了一种新思路。
Abstract
A hierarchical elliptical perforated-panel metamaterial (HEPMM) is proposed to investigate the effect of boundary load on its bandgaps (BGs). In this research, the boundary load was applied directly to the boundary of HEPMM, and the finite element method was adopted to study the effect of BGs with structural deformation which caused by the boundary load. Three-dimensional finite element models of different hierarchical elliptical perforated panels were established, and simplified into two-dimensional structure to investigate the in-plane bandgap characteristics conveniently. Then, the bandgap characteristics, transmission loss and different vibration modes of HEPMM with and without boundary load were simulated and analyzed. According to the results, the BGs frequencies are reduced by introducing hierarchy. Meanwhile, full BGs and directional BGs are additionally opened under boundary load, thus the propagation of elastic wave is suppressed effectively. The study provides a new idea to design perforated-panel metamaterial.
参考文献

[1] HONG C, ELLIOTT S J. Local feedback control of light honeycomb panels[J]. The Journal of the Acoustical Society of America, 2007, 121(1): 222-233.

[2] 徐俭乐, 崔洪宇, 洪 明. 声子晶体夹层板结构的隔声性能研究[J]. 振动与冲击, 2021, 40(9): 285-291.

[3] LIU A P, ZHOU X M, HUANG G L, et al. Super-resolution imaging by resonant tunneling in anisotropic acoustic metamaterials[J]. The Journal of the Acoustical Society of America, 2012, 132(4): 2800-2806.

[4] MA G C, YANG M, YANG Z Y, et al. Low-frequency narrow-band acoustic filter with large orifice[J]. Applied Physics Letters, 2013, 103(1): 011903.

[5] YANG P, WU J Z, ZHAO R R, et al. Study of high frequency acoustic directional transmission model based on graphene structure[J]. AIP Advances, 2020, 10(3): 035308.

[6] MALDOVAN M. Sound and heat revolutions in phononics[J]. Nature, 2013, 503(7475): 209-217.

[7] ACHAOUI Y, KHELIF A, BENCHABANE S, et al. Experimental observation of locally-resonant and Bragg band gaps for surface guided waves in a phononic crystal of Pillars[J]. Physical Review B, 2011, 83(10): 104201.

[8] LIU Z, ZHANG X, MAO Y, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736.

[9] YAO Z C, ZHAO R X, ZEGA V, et al. A metaplate for complete 3D vibration isolation[J]. European Journal of Mechanics-A/Solids, 2020, 84: 104016.

[10] WANG Y F, WANG Y S. Multiple wide complete bandgaps of two-dimensional phononic crystal slabs with cross-like holes[J]. Journal of Sound and Vibration, 2013, 332(8): 2019-2037.

[11] WANG Y F, WANG Y S, SU X X. Large bandgaps of two-dimensional phononic crystals with cross-like holes[J]. Journal of Applied Physics, 2011, 110(11): 113520.

[12] KRUSHYNSKA A O, MINIACI M, BOSIA F, et al. Coupling local resonance with Bragg band gaps in single-phase mechanical metamaterials[J]. Extreme Mechanics Letters, 2017, 12: 30-36.

[13] TIAN X Y, CHEN W J, GAO R J, et al. Merging Bragg and local resonance bandgaps in perforated elastic metamaterials with embedded spiral holes[J]. Journal of Sound and Vibration, 2021, 500: 116036.

[14] CHENG Q, GUO H, YUAN T, et al. Topological design of square lattice structure for broad and multiple band gaps in low-frequency range[J]. Extreme Mechanics Letters, 2020, 35: 100632.

[15] SUN P, ZHANG Z D, GUO H, et al. Topological optimization of hierarchical honeycomb acoustic metamaterials for low-frequency extreme broad band gaps[J]. Applied Acoustics, 2022, 188: 108579.

[16] SEPEHRI S, JAFARI H, MASHHADI M M, et al. Study of tunable locally resonant metamaterials: effects of spider-web and snowflake hierarchies[J]. International Journal of Solids and Structures, 2020, 204/205: 81-95.

[17] MINIACI M, KRUSHYNSKA A, GLIOZZI A S, et al. Design and fabrication of bioinspired hierarchical dissipative elastic metamaterials[J]. Physical Review Applied, 2018, 10(2): 024012.

[18] BILLON K, ZAMPETAKIS I, SCARPA F, et al. Mechanics and band gaps in hierarchical auxetic rectangular perforated composite metamaterials[J]. Composite Structures, 2017, 160: 1042-1050.

[19] XU X C, BARNHART M V, LI X P, et al. Tailoring vibration suppression bands with hierarchical metamaterials containing local resonators[J]. Journal of Sound and Vibration, 2019, 442: 237-248.

[20] BERTOLDI K, BOYCE M C, DESCHANEL S, et al. Mechanics of deformation-triggered pattern transformations and superelastic behavior in periodic elastomeric structures[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(8): 2642-2668.

[21] BERTOLDI K, BOYCE M C. Mechanically triggered transformations of phononic band gaps in periodic elastomeric structures[J]. Physical Review B, 2008, 77(5): 052105.

[22] BOATTI E, VASIOS N, BERTOLDI K. Origami metamaterials for tunable thermal expansion[J]. Advanced Materials, 2017, 29(26): 1700360.

[23] SHIM J, WANG P, BERTOLDI K. Harnessing instability-induced pattern transformation to design tunable phononic crystals[J]. International Journal of Solids and Structures, 2015, 58: 52-61.

[24] GAO N, LI J, BAO R H, et al. Harnessing uniaxial tension to tune Poisson’s ratio and wave propagation in soft porous phononic crystals: an experimental study[J]. Soft Matter, 2019, 15(14): 2921-2927.

[25] GRIMA J N, MIZZI L, AZZOPARDI K M, et al. Auxetic perforated mechanical metamaterials with randomly oriented cuts[J]. Advanced Materials, 2016, 28(2): 385-389.

[26] JAVID F, WANG P, SHANIAN A L, et al. Architected materials with ultra-low porosity for vibration control[J]. Advanced Materials, 2016, 28(28): 5943-5948.

[27] TIAN X Y, CHEN W J, GAO R J, et al. Perforation-rotation based approach for band gap creation and enlargement in low porosity architected materials[J]. Composite Structures, 2020, 245: 112331.

[28] TRAINITI G, RIMOLI J J, RUZZENE M. Wave propagation in undulated structural lattices[J]. International Journal of Solids and Structures, 2016, 97/98: 431-444.

[29] FOEHR A, BILAL O R, HUBER S D, et al. Spiral-based phononic plates: from wave beaming to topological insulators[J]. Physical Review Letters, 2018, 120(20): 205501.

[30] NING S W, YANG F Y, LUO C C, et al. Low-frequency tunable locally resonant band gaps in acoustic metamaterials through large deformation[J]. Extreme Mechanics Letters, 2020, 35: 100623.

[31] LI J, WANG Y T, CHEN W Q, et al. Harnessing inclusions to tune post-buckling deformation and bandgaps of soft porous periodic structures[J]. Journal of Sound and Vibration, 2019, 459: 114848.

[32] DUDEK K K, MARTNEZ J A I, ULLIAC G, et al. Micro-scale auxetic hierarchical mechanical metamaterials for shape morphing[J]. Advanced Materials, 2022, 34(14): e2110115.

[33] SHI H Y Y, TAY T E, LEE H P. Elastic wave propagation in perforated plates with tetrad elliptical structural hierarchy: numerical analysis and experimental verification[J]. Journal of Sound and Vibration, 2019, 448: 73-82.

[34] JIN W C, GUO H, SUN P, et al. Numerical investigation of discrepancies between two-dimensional and three-dimensional acoustic metamaterials[J]. Frontiers in Materials, 2021, 8: 759740.

张祖坚, 郭辉, 王晓玮, 袁涛, 孙裴. 边界载荷对层级椭圆穿孔板超材料带隙的影响[J]. 人工晶体学报, 2023, 52(2): 261. ZHANG Zujian, GUO Hui, WANG Xiaowei, YUAN Tao, SUN Pei. Effect of Boundary Load on Bandgaps of Elliptical Perforated-Hierarchical Panel Metamaterials[J]. Journal of Synthetic Crystals, 2023, 52(2): 261.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!