光谱学与光谱分析, 2021, 41 (5): 1644, 网络出版: 2021-05-14  

LED照明系统的光谱组成对糖脂代谢的影响

Impact of Spectral Component of LED Lighting System on Glucose and Lipid Metabolism
作者单位
1 解放军医学院, 北京 100853
2 解放军总医院第一医学中心激光医学科, 北京 100853
3 北京理工大学工程医学研究所, 北京 100081
4 中国医学科学院精准激光医疗诊疗创新单位, 北京 100730
摘要
哺乳动物昼夜节律系统对不同光谱组成敏感性不同。 时差光照模式可导致昼夜节律紊乱进而增加患代谢性疾病的风险。 然而, 光谱组成是否影响时差光照模式的代谢效应尚不明确。 采用昼夜节律系统敏感性显著不同的窄带LED光照(蓝光和红光波段)和宽带LED白光, 分析光谱组成对时差光照模式下小鼠糖脂代谢功能的影响, 并与正常光照模式进行比较。 光照强度均采用120 μW·cm-2。 结果显示白光时差组小鼠体重增加最多。 红光时差组小鼠出现严重脂质代谢紊乱, 并伴有肝功能受损。 白光下时差光照会显著降低葡萄糖耐量和胰岛素敏感性, 而红光和蓝光能阻碍时差光照引起空腹血糖升高。 研究表明调整光谱组成可能改善时差光照模式对糖脂代谢的不良影响。
Abstract
The mammalian circadian system has a different sensitivity to various spectral components. The chronically alternating light-dark cyde (“jetlag”) has been shown to cause circadian disturbances and increase the risk of metabolic diseases. However, it remains unknown whether the spectral component affects the metabolic effects under “jetlag” light cycles. In this study, broadband white light-emitting diode (LED) and narrow-band LEDs [blue light (BL) and red light (RL) with significantly different sensitivity to circadian system] were used to analyze the effect of the spectral component on the metabolism under normal and aberrant light cycles in C57BL/6J mice. All the light intensities is 120 μW·cm-2. The results showed that jetlag white light (WL) mice exhibited the most body weight gain. Jetlag RL mice suffered from significant lipid metabolism disorders and impaired liver function. Jetlag WL significantly reduced glucose tolerance and insulin sensitivity, while RL and BL prevented jetlag mice from an increase in fasting serum glucose. This study shows that modulating the spectral component may improve the adverse effects of the “jetlag” light pattern on glucose and lipid metabolism.
参考文献

[1] Dauchy R T, Blask D E, Hoffman A E. Comparative Medicine, 2019, 69: 350.

[2] Provencio I, Rodriguez IR, Jiang G. J. Neurosci., 2000, 20: 600.

[3] Hattar S, Liao H W, Takao M. Science, 2002, 295: 1065.

[4] Hattar S, Lucas R J, Mrosovsky N. Nature, 2003, 424: 76.

[5] Peirson S N, Brown L A, Pothecary C A. J. Neurosci. Methods, 2018, 300: 26.

[6] Panda S. Science, 2016, 354: 1008.

[7] Poggiogalle E, Jamshed H, Peterson C M. Metabolism, 2017, 84: 11.

[8] McFadden E, Jones M E, Schoemaker M J. Am. J. Epidemiol., 2014, 180: 245.

[9] Shan Z, Li Y, Zong G. BMJ, 2018, 363: k4641.

[10] Kotilainen T, Aphalo P J, Brelsford C C. Agric. for Meteorol., 2020, 291: 108041.

[11] Walmsley L, Hanna L, Mouland J. PLoS Biol., 2015, 13: e1002127.

[12] Opperhuizen A-L, Stenvers DJ, Jansen RD. Diabetologia, 2017, 60: 1333.

[13] Zhang S, Zhang Y, Zhang W. Ecotoxicol. Environ. Saf., 2019, 178: 94.

[14] Masis-Vargas A, Ritsema W, Mendoza J. Obesity (Silver Spring), 2020, 28(Suppl. 1): S114.

[15] Cheung I N, Zee P C, Shalman D. PLoS One, 2016, 11: e0155601.

[16] Nayak G, Zhang K X, Vemaraju S. Cell. Rep., 2020, 30: 672.

[17] Ondrusova K, Fatehi M, Barr A. Sci. Rep., 2017, 7: 16332.

[18] Mohawk J A, Pargament J M, Lee T M. Physiol. Behav., 2007, 92: 800.

[19] Figueiro M G, Rea M S. Int. J. Endocrinol., 2010: 829351.

[20] Petrowski K, Buehrer S, Niedling M. Stress, 2021, 24: 29.

[21] Arble D M, Bass J, Laposky A D. Obesity (Silver Spring), 2009, 17: 2100.

[22] Chaix A, Zarrinpar A, Miu P. Cell. Metab., 2014, 20: 991.

[23] Mukherji A, Kobiita A, Damara M. Proc. Natl. Acad. Sci. USA, 2015, 112: E6691.

[24] Schilperoort M, van den Berg R, Dolle M E T. Sci. Rep., 2019, 9: 7874.

[25] Bourgin P, Hubbard J. PLoS Biol., 2016, 14: e2000111.

[26] Motamedzadeh M, Golmohammadi R, Kazemi R. Physiol. Behav., 2017, 177: 208.

[27] Pilorz V, Tam S K, Hughes S. PLoS Biol., 2016, 14: e1002482.

[28] Harvey A G. Annu. Rev. Clin. Psychol., 2011, 7: 297.

[29] Mansur R B, Brietzke E, McIntyre R S. Neurosci. Biobehav. Rev., 2015, 52: 89.

[30] Bedrosian T A, Nelson R J. Transl. Psychiatry, 2017, 7: e1017.

[31] Dauchy R T, Wren-Dail M A, Hoffman A E. Comp. Med., 2016, 66: 373.

[32] Figueiro M G, Bullough J D, Parsons R H. Neuroreport, 2004, 15: 313.

范晓静, 陈德福, 曾晶, 梁昕悦, 徐轶煊, 邱海霞, 顾瑛. LED照明系统的光谱组成对糖脂代谢的影响[J]. 光谱学与光谱分析, 2021, 41(5): 1644. FAN Xiao-jing, CHEN De-fu, ZENG Jing, LIANG Xin-yue, XU Yi-xuan, QIU Hai-xia, GU Ying. Impact of Spectral Component of LED Lighting System on Glucose and Lipid Metabolism[J]. Spectroscopy and Spectral Analysis, 2021, 41(5): 1644.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!