压电与声光, 2023, 45 (6): 872, 网络出版: 2024-01-04  

三稳态压电-电磁复合能量采集器性能研究

Research on a Tristable Piezoelectric-Electromagnetic CompositeEnergy Harvesters
作者单位
1 上海工程技术大学 机械与汽车工程学院,上海201620
2 上海工程技术大学 机械与汽车工程学院,上海201620上海艾为电子技术股份有限公司,上海201199
摘要
为了提高双稳态压电电磁复合能量采集器(BPEEH)的能量转换性能和转换效率,该文在典型BPEEH的基础上,提出了一种新颖的三稳态压电电磁复合能量采集器(TPEEH)。与传统的BPEEH相比,其兼有一个新颖的电磁发电装置,进一步构成三稳态系统。该文通过对TPEEH结构装置建立数学模型,进行了数值分析,并得到该采集器系统的势能变化函数。在此基础上,通过实验验证了外界激励频率、磁铁间距及电路负载电阻对该采集器输出电压和功率的影响。实验结果表明,当磁距为16 mm,外部磁间距为26 mm,外部激励频率为10.2 Hz时,TPEEH采集器有最大的输出电压(为6.348 9 V),同时在外部负载电阻为500 Ω时,采集器获得最大输出功率(为0.08 W)。与传统的BPEEH采集器相比,TPEEH采集器的采集谐振频率低,采集频带宽,输出电压和功率高,从而提高了能量转换性能和效率。
Abstract
In order to improve the energy conversion performance and conversion efficiency of the bistable piezoelectromagnetic complex energy harvester(BPEEH), a novel tristable piezoelectromagnetic complex energy harvester(TPEEH) is proposed on the basis of the typical BPEEH, which has a novel electromagnetic power generation device to further constitute the tristable system compared with the traditional BPEEH. In this paper, a mathematical model of the TPEEH structural device is developed and numerical analysis is performed to obtain the potential energy change function of the harvester system. Based on this, the effects of external excitation frequency, magnet spacing, and circuit load resistance on the output voltage and power of this collector were further verified experimentally. The experimental results show that the TPEEH collector has a maximum output voltage of 6.348 9 V under this condition when the magnetic distance is 16 mm, the external magnetic spacing is 26 mm, and the external excitation frequency is 10.2 Hz, while the collector obtains a maximum output power of 0.08 W when the external load resistance is 500 Ω. Therefore, compared with the conventional BPEEH collector, the TPEEH collector has the advantages of lower acquisition resonant frequency, wider acquisition band, and higher output voltage and power, which further improves the energy conversion performance and efficiency.
参考文献

[1] XIA H K,CHEN R W,REN L.Analysis of piezoelectric-electromagnetic hybrid vibration energy harvester under different electrical boundary conditions[J].Sensors and Actuators A:Physical,2015,234:87-98.

[2] ARROYO E,BADEL A,FORMOSA F,et al.Comparison of electromagnetic and piezoelectric vibration energy harvesters:Model and experiments[J].Sensors and Actuators A:Physical,2012,183:148-156.

[3] MEIROVITCH L.Fundamentals of vibrations[M].New York:McGraw-Hill,2003:35-40.

[4] WANG Z W,LI T J.A semi-analytical model for energy harvesting of flexural wave propagation on thin plates by piezoelectric composite beam resonators[J].Mechanical Systems and Signal Processing,2021,147(107137):1-17.

[5] 赵念.压电式三维多模态振动能量采集器[D].重庆:重庆大学,2016.

[6] SHINDO Y,NARITA E.Dynamic bending/torsion and output power of S-shaped piezoelectric energy harvesters[J].Journal of Mechanics and Materials in Design,2014,10(3):305-311.

[7] 卢义刚,颜振方.Cymbal压电发电换能器有限元分析[J].振动与冲击,2013,32(6):157-162.

[8] LIU W,HAN M D,MENG B,et al.Low frequency wide bandwidth MEMS energy harvester based on spiral-shaped PVDF cantilever[J].Science China Technological Sciences,2014,57(6):1068-1072.

[9] JOHNSON T J,CHARNEGIE D,CLARK W W,et al.Energy harvesting from mechanical vibrations using piezoelectric cantilever beams[J].Proceedings of SPIE-The International Society for Optical Engineering,University of Bristol,2006,61690:1-12.

[10] SODANO H A,PARK G,INMAN D J.Estimation of electric charge output for piezoelectric energy harvesting[J].Strian,2004,40(2):49-58.

[11] 闫震,何青,王东平.具有质量块的悬臂梁压电发电机仿真研究[J].系统仿真学报,2015,27(7):1638-1643.

[12] 沙山克普里亚,丹尼尔,茵曼.能量收集技术[M].黄见秋,黄庆安,译.南京: 东南大学出版社,2011:237-241.

[13] 栾桂东,张金译,王仁乾.压电换能器和换能器阵(修订版)[M].北京: 北京大学出版社,2005:20-25.

[14] WANG X,YANG B,LIU J,et al.A flexible triboelectric-piezoelectric hybrid nanogenerator based on P(VDF-TrFE) nanofibers and PDMS/MWCNT for wearable devices[J].Sci Rep,2016,6(36409):1-10.

[15] YANG Y,WANG Z L.Hybrid energy cells for simultaneously harvesting multi-types of energies,Nano Energy,2015,14:245-256.

[16] IQBAL M,KHAN F U.Hybrid vibration and wind energy harvesting using combined piezoelectric and electromagnetic conversion for bridge health monitoring applications[J].Energy Conversion and Management,2018,172:611-618.

[17] TOYABUR R M,SALAUDDIN M,CHO H,et al.A multimodal hybrid energy harvester based on piezoelectric-electromagnetic mechanisms for low-frequency ambient vibrations[J].Energy Conversion and Management,2018,168:454-466.

[18] JAVED U,ABDELKEFI A.Characteristics and comparative analysis of piezoelectric-electromagnetic energy harvesters from vortex-induced oscillations[J].Nonlinear Dynamics,2019,95:3309-3333.

[19] BOLAT F C,BASARAN S,SIVRIOGLU S.Piezoelectric and electromagnetic hybrid energy harvesting with low-frequency vibrations of an aerodynamic profile under the air effect[J].Mechanical Systems and Signal Processing,2019,133(1):106246.1-106246.15.

彭召洋, 宋芳, 熊玉仲. 三稳态压电-电磁复合能量采集器性能研究[J]. 压电与声光, 2023, 45(6): 872. PENG Zhaoyang, SONG Fang, XIONG Yuzhong. Research on a Tristable Piezoelectric-Electromagnetic CompositeEnergy Harvesters[J]. Piezoelectrics & Acoustooptics, 2023, 45(6): 872.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!