量子电子学报, 2016, 33 (5): 513, 网络出版: 2016-10-21   

新一代惯性测量仪器:拉曼型原子干涉陀螺仪

A new generation of inertial measurement instrument: Raman-type atom interferometric gyroscope
王锴 1,2,3,*姚战伟 1,2鲁思滨 1,2,3李润兵 1,2王谨 1,2詹明生 1,2
作者单位
1 中国科学院武汉物理与数学研究所波谱与原子分子物理国家重点实验室, 湖北 武汉 430071
2 中国科学院冷原子物理中心, 湖北 武汉 430071
3 中国科学院大学, 北京 100049
摘要
近年来,原子干涉技术的快速发展为转动精密测量及相关应用研究提供了新的途径。原子干涉 陀螺仪比传统光学陀螺仪的灵敏度更高,是新一代的惯性测量仪器,具有极大的应用前景。介绍了 拉曼型原子干涉陀螺仪的基本原理、主要性能和技术特点,给出了在拉曼干涉型冷原子陀螺仪方 面的最新研究进展,分析了原子干涉陀螺仪的研究现状和发展前景。
Abstract
In recent years, the rapid development of atom interference technique provides a new way for rotation precision measurement and the related applications. The sensitivitiy of atom interferometer is higher than that of the traditional optical gyroscopes. It is a new generation of inertial measurement instrument, and it has great application prospects. The basic principle, main performance and technical characteristics of Raman-type atom interferometry gyroscopes are introduced. The latest research progress in the field of Raman interference type cold atom gyroscope is presented. The research status and development prospects are analyzed.
参考文献

[1] Song G Y. Development and application of gyroscope[J]. Non. Met. (有色金属), 2002, 54(4):108-110 (in Chinese).

[2] Everitt C W F, DeBra D B, Parkinson B W. Gravity probe B: Final results of a space experiment to test general relativity[J]. Phys. Rev. Lett., 2011, 10(22): 221101.

[3] Xia D Z, Yu C, Kong L. The development of micromachined gyroscope structure and circuitry technology[J]. Sensors, 2014, 14(1): 1394-1473.

[4] Chow W W, Pedrotti L M, Sanders V E, et al. The ring laser gyro[J]. Rev. Mod. Phys., 1985, 57(1): 67-104.

[5] Mendes C P J, Boehm J, Schuh H, et al. Earth rotation observed by very long baseline interferometry and ring laser[J]. Pure Appl. Geophys., 2009, 16(8-9): 1499-1517.

[6] Hurst R B, Stedman G E, Schreiber K U, et al. Experiments with an 834 m2 ring laser interferometer[J]. J. Appl. Phys., 2009, 105(11): 113115.

[7] Stedman G E, Schreiber K U, Bilger H R. On the detectability of the Lense-Thirring field from rotating laboratory masses using ring laser gyroscope interferometers[J]. Class. Quantum Gravity, 2003, 20(3): 2527-2540.

[8] Sanders S J, Strandjord L K, Mead D. Fiber optic gyro technology trends a Honeywell perspective[C]. Proceeding of OFS 2002, Hilton Portland, Portland, OR, USA, 2002: 5-8.

[9] Kornack T W, Ghosh R K, Romalis M V. Nuclear spin gyroscope based on an atomic magnetometer[J]. Phys. Rev. Lett., 2005, 95(23): 230801.

[10] Avenel O, Mukharsky Y, Varoquaux E. Superfluid gyrometers[J]. J. Low. Temp. Phys., 2004, 135(5-6): 745-772.

[11] Narayana S, Sato Y. Superfluid quantum interference in multiple-turn reciprocal geometry[J]. Phys. Rev. Lett., 2011, 10(25): 255301.

[12] Gustavson T L, Bouyer P, et al. Precision rotation measurements with an atom interferometer gyroscope[J]. Phys. Rev. Lett., 1997, 78(11): 2046-2049.

[13] Riehle F, Kisters Th, Witte A, et al. Optical Ramsey spectroscopy in a rotating frame Sagnac effect in a matter-wave interferometer[J]. Phys. Rev. Lett., 1991, 67(2): 177-180.

[14] Lenef A, Hammond T D, Smith E T, et al. Rotation sensing with an atom interferometer[J]. Phys. Rev. Lett., 1997, 78(5): 760-763.

[15] Gustavson T L, Landragin A, et al. Rotation sensing with a dual atom- interferometer Sagnac gyroscope[J]. Class. Quantum Gravity, 2000, 17(12): 2385-2398.

[16] Derfee D S, Shaham Y K, Kasevich M A. Long- term stability of an area- reversible atom interferometer Sagnac gyroscope[J]. Phys. Rev. Lett., 2006, 97(24): 801-805.

[17] Gauguet A, Canuel B, Lévèque T, et al. Characterization and limits of a cold-atom Sagnac interferometer[J]. Phys. Rev. A, 2009, 80(6): 3604-3616.

[18] Stockton J K, Takase K, Kasevich M A. Absolute geodetic rotation measurement using atom interferometry[J]. Phys. Rev. Lett., 2011, 107(13): 133001.

[19] Giltner D M, et al. Atom interferometer based on Bragg scattering from standing light waves[J]. Phys. Rev. Lett., 1995, 75(14): 2638-2641.

[20] Muller H, Chiow S W, Long Q, et al. Atom interferometry with up to 24-photon-momentum-transfer beam splitters[J]. Phys. Rev. Lett., 2008, 100(18): 180405.

[21] Altin P A, Johnsson M T, Negnevitsky V, et al. Precision atomic gravimeter based on Bragg diffraction[J]. New J. Phys., 2013, 15(2): 023009.

[22] Clade P, Guellati-Khelifa S, et al. Large momentum beam splitter using Bloch oscillations[J]. Phys. Rev. Lett., 2009, 102(24): 240402.

[23] McDonald G D, Kuhn C C N, Bennetts S, et al. 80k momentum separation with Bloch oscillations in an optically guided atom interferometer[J]. Phys. Rev. A, 2013, 88(5): 053620.

[24] McDonald G D, Keal H, Altin P A, et al. Optically guided linear Mach-Zehnder atom interferometer[J]. Phys. Rev. A, 2013, 87(1): 013632.

[25] Wang J, Zhou L, Li R B, et al. Cold atom interferometers and their applications in precision measurements[J]. Front. Phys. China, 2009, 4(2): 179-189.

[26] Ng L C, Pines D J. Characterization of ring laser gyro performance using the Allan variance method[J]. J. Guidance, 1996, 20(1): 211-214.

[27] Ramalingam R, Anitha G, Shanmugam J. Microelectromechanical systems inertial measurement unit error modelling and error analysis for low-cost strap down inertial navigation system[J]. Def. Sci. J., 2009, 59(6): 650-658.

[28] Itano W M, Bergquist J C, Bollinger J J, et al. Quantum projection noise: Population fluctuations in two level systems[J]. Phys. Rev. A, 1993, 47(5): 3554-3570.

[29] Santarelli G, Laurent P, Lemonde P, et al. Quantum projection noise in an atomic fountain: A high stability cesium frequency standard[J]. Phys. Rev. Lett., 1999, 82(23): 4619-4622.

[30] Scully M O, Dowling J P. Quantum-noise limits to matter-wave interferometry[J]. Phys. Rev. A, 1993, 48(4): 3186-3190.

[31] Jacobson J, Bjork G, Yamamoto Y. Quantum limit for the atom-light interferometer[J]. Appl. Phys. B, 1995, 60(2-3): 187-191.

[32] Dowling J P. Correlated input-port, matter-wave interferometer: Quantum-noise limits to the atom-laser gyroscope[J]. Phys. Rev. A, 1998, 57(6): 4736-4746.

[33] Tackmann G, Berg P, Schubert C, et al. Self-alignment of a compact large-area atomic Sagnac interferometer[J]. New J. Phys., 2012, 14(1): 015002.

[34] Schreiber K U, Wells J P R. Invited review article: Large ring lasers for rotation sensing[J]. Rev. Sci. Instrum., 2013, 84(4): 041101.

[35] Bouyer P, Gustavson T, Haritos K, et al. Microwave signal generation with optical injection locking[J]. Opt. Lett., 1996, 21(18): 1502.

[36] Biedermann G M, Wu X, et al. Low-noise simultaneous fluorescence detection of two atomic states[J]. Opt. Lett., 2009, 34(3): 347-349.

[37] Yver-Leduc F, Cheinet P, Fils J, et al. Reaching the quantum noise limit in a high-sensitivity cold-atom inertial sensor[J]. J. Opt. B-Quantum Semiclass. Opt., 2003, 5(2): S136-S142.

[38] Fils J, Leduc F, Bouyer P, et al. Influence of optical aberrations in an atomic gyroscope[J]. Eur. Phys. J. D, 2005, 3(3): 257-260.

[39] Canuel B, Leduc F, Holleville D, et al. Six-axis inertial sensor using cold-atom interferometry[J]. Phys. Rev. Lett., 2006, 97(1): 402-406.

[40] Gauguet A, Mehlstubler T E, et al. Off-resonant Raman transition impact in an atom interferometer[J]. Phys. Rev. A, 2008, 78(4): 043615.

[41] Müller T, Wendrich T, Gilowski M, et al. Versatile compact atomic source for high-resolution dual atom interferometry[J]. Phys. Rev. A, 2007, 7(6): 063611.

[42] Müller T, Gilowski M, Zaiser M, et al. A compact dual atom interferometer gyroscope based on laser-cooled rubidium[J]. Eur. Phys. J. D, 2009, 53(3): 273-281.

[43] Wang P, Li R B, Yan H, et al. Demonstration of a Sagnac type cold atom interferometer with stimulated Raman transitions[J]. Chin. Phys. Lett., 2007, 24(1): 27-30.

[44] Li R B, Wang P, Yan H, et al. Magnetic field dependence of coherent population transfer by the stimulated Raman transition[J]. Phys. Rev. A, 2008, 77(3): 033425.

[45] Li R B, Zhou L, Wang J, et al. Measurement of the quadratic Zeeman shift of 85Rb hyperfine sublevels using stimulated Raman transitions[J]. Opt. Commun., 2009, 282(7): 1340-1344.

[46] Zhou L, Xiong Z, Yang W, et al. Measurement of local gravity via a cold atom interferometer[J]. Chin. Phys. Lett., 2011, 28(1): 013701.

[47] Zhou L, Xiong Z Y, Yang W, et al. Development of an atom gravimeter and status of the 10-meter atom interferometer for precision gravity measurement[J]. Gen. Relativ. Gravit., 2011, 43: 1931-1942.

[48] Li R B, Wang J, Zhan M. New generation inertial navigation technology: Cold atom gyroscope[J]. Gnss World of China, 2010, 4: 1-5.

[49] Tang B, Zhou L, Xiong Z, et al. A programmable broadband low frequency active vibration isolation system for atom interferometry[J]. Rev. Sci. Instrum., 2014, 85(9): 093109.

[50] Wang X J, Feng Y Y, Xue H B, et al. A cold 87Rb atomic beam[J]. Chin. Phys. B, 2011, 20(12): 126701.

[51] Xue H B, Feng Y Y, Chen S, et al. A continuous cold atomic beam interferometer[J]. J. Appl. Phys., 2015(117): 094901.

[52] Chiow S W, Kovachy T, Chien H C, et al. 102k large area atom interferometers[J]. Phys. Rev. Lett., 2011, 107(13): 130403.

[53] Dickerson S M, Hogan J M, Sugarbaker A, et al. Multiaxis inertial sensing with long-time point source atom interferometry[J]. Phys. Rev. Lett., 2013, 111(08): 083001.

[54] Gross C, Zibold T, Nicklas E, et al. Nonlinear atom interferometer surpasses classical precision limit[J]. Nature, 2010, 464: 1165-1169.

[55] Muntinga. H, Ahlers. H, Krutzik. M, et al. Interferometry with Bose-Einstein condensates in microgravity[J]. Phys. Rev. Lett., 2013, 110(9): 093602.

[56] Wu S J, Su E, et al. Demonstration of an area-enclosing guided-atom interferometer for rotation sensing[J]. Phys. Rev. Lett., 2007, 99(17): 173201.

[57] McGuinness H J, Rakholia A V, et al. High data-rate atom interferometer for measuring acceleration[J]. Appl. Phys. Lett., 2012, 100(1): 011106.

王锴, 姚战伟, 鲁思滨, 李润兵, 王谨, 詹明生. 新一代惯性测量仪器:拉曼型原子干涉陀螺仪[J]. 量子电子学报, 2016, 33(5): 513. WANG Kai, YAO Zhanwei, LU Sibing, LI Runbing, WANG Jin, ZHAN Mingsheng. A new generation of inertial measurement instrument: Raman-type atom interferometric gyroscope[J]. Chinese Journal of Quantum Electronics, 2016, 33(5): 513.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!