大气与环境光学学报, 2022, 17 (3): 279, 网络出版: 2022-07-22  

全球分光地表反照率的长期变化

Study on long-term change of global spectral surface albedo
作者单位
1 中国气象科学研究院灾害天气国家重点实验室, 北京 100081
2 南京信息工程大学气象灾害预报预警与评估协同创新中心, 气象灾害教育部重点实验室, 江苏 南京 210000
3 中国科学院大学, 北京 100049
4 中国气象局气候研究开放实验室/中国气象局气候中心, 北京 100081
5 重庆市气象科学研究所, 重庆 401147
摘要
为了精确地定量研究土地利用变化对地表反照率的影响, 利用公元 850-2100 年期间土地利用数据集获取了一套长时期的全球分光 (近红外、可见光、短波) 地表反照率数据集, 并进行了详细的分析和对比验证。验证结果表明, 所得的分光地表反照率与 MODIS 数据对应结果的空间分布特征基本一致; 在非冰雪覆盖区的可见光反照率差别在-0.0081~0.0029 之间, 精度较高; 差别最大的区域为南、北半球中高纬度的冰雪覆盖区。研究表明, 自 1860 年以来, 所有典型区域 (包括中国东部、欧洲东南部、美国中东部和巴西南部) 的城市建成区逐年增加, 特别是巴西南部的自然植被逐年减少; 在 1860-1980 年间, 各区域主要表现为自然植被向城市建成区和耕地转化; 在 1980-2015 年, 巴西南部耕地类型持续增加, 其余区域均表现出自然植被逐步恢复的变化趋势。此外, 不同土地利用类型的分光反照率存在很大差别, 例如, 春季可见光反照率在冰雪表面为 0.5069, 混交林为 0.0444, 而城市建成区为 0.0870; 且受不同纬度和下垫面性质的影响, 同一土地利用类型的分光地表反照率也存在明显的空间差异, 例如, 春季草原的可见光反照率最大为 0.4915, 最小为 1.127×10-4。 这套长时期全球分光地表反照率数据集可以为土地利用变化驱动气候变化的相关定量研究奠定数据基础。
Abstract
In order to study the impact of land use change on the surface albedo accurately and quantitatively, a long-term global spectral surface albedo dataset (near-infrared, visible, shortwave) is obtained by using land use types dataset from 850 A.D. to 2100 A.D. provided by land-use harmonization (LUH2) project, and then detailed analysis and comparative verification are carried out. The results show that, the spatial distribution characteristics of spectral surface albedo obtained in this work are consistent with those of MODIS. The visible albedo in non-snow and non-ice covered area varies from-0.0081 to 0.0029 with high precision, while the largest difference is found in snow and ice covered area inthe middle and high latitudes of the southern and northern hemisphere. It is also shown that, since 1860, the urban built-up area has increased year by year in all typical regions (including Eastern China, Southeastern Europe, Mid-east Unite States and Southern Brazil), while the natural vegetations have decreased in Southern Brazil. From 1860 to 1980, natural vegetations were mainly transformed into urban and croplands in each region. In 1980~2015, croplands continued to increase in Southern Brazil, while the other regions showed a trend of gradual restoration of natural vegetations. In addition, the spectral albedo of different land cover types varies greatly. For example, the visible albedo in spring is 0.5069 on the surface of ice/snow, while itis 0.0444 in mixed forest and 0.0870 in urban. Under the influence of different latitudes and underlying surface properties, even the spectral albedo of the same land use type also has obvious spatial differences. For example, the maximum visible albedo of grassland in spring is 0.4915, and the minimum is 1.127×10-4. It is believed that the long-term global spectral albedo dataset can lay a data foundation for the quantitative research on the climate change driven by land use change.
参考文献

[1] Collins W D, Rasch P J, Boville B A, et al. Description of the NCAR community atmosphere model (CAM 3.0)[R]. (No. NCAR/TN-464+STR), University Corporation for Atmospheric Research, 2004.

[2] Sellers P J, Meeson B W, Hall F G, et al. Remote sensing of the land surface for studies of global change: Models-algorithms-experiments[J]. Remote Sensing of Environment, 1995, 51(1): 3-26.

[3] Dickinson R E. Land processes in climate models[J]. Remote Sensing of Environment, 1995, 51(1): 27-38.

[4] He J. Changes of Surface Albedo and Its Radiation Effects Caused by Land Use Change[D]. Beijing: Chinese Academy of Meteorological Sciences, 2021.

[5] Shen Z B, Zuo H C. The study on the variation of the surface albedo over the Qinghai-Xizang plateau[J]. Plateau Meteorology, 1993, 12(3): 294-301.

[6] Zhai J, Liu R Go, Liu J Y, et al. Radiative forcing over China due to albedo change caused by land cover change during 1990-2010[J]. Acta Geographica Sinica, 2013, 68(7): 875-885.

[7] Barnes C A, Roy D P. Radiative forcing over the conterminous United States due to contemporary land cover land use albedo change[J]. Geophysical Research Letters, 2008, 35(9): L09706.

[8] Bala G, Caldeira K, Mirin A, et al. Biogeophysical effects of CO2 fertilization on global climate[J]. Tellus B: Chemical and Physical Meteorology, 2006, 58(5): 620-627.

[9] Lee X, Goulden M L, Hollinger D Y, et al. Observed increase in local cooling effect of deforestation at higher latitudes[J]. Nature, 2011, 479(7373): 384-387.

[10] Rotenberg E, Yakir D. Contribution of semi-arid forests to the climate system[J]. Science, 2010, 327(5964): 451-454.

[11] Xu Z F, Zhang W Y, Guo W D. The impacts of large scale land use change on regional air temperature and its variability[J]. China Basic Science, 2015, 17(5): 34-39.

[12] Andrews T, Betts R A, Booth B B B, et al. Effective radiative forcing from historical land use change[J]. Climate Dynamics, 2017, 48(11/12): 3489-3505.

[13] Collins W J, Bellouin N, Doutriaux-Boucher M, et al. Development and evaluation of an Earth-System model-HadGEM2[J]. Geoscientific Model Development, 2011, 4(4): 1051-1075.

[14] Tang R Y, Zhao X, Tang B J, et al. Influence of urbanization on radiative forcing in Beijing[J]. Journal of Beijing Normal University (Natural Science), 2017, 53(4): 443-450.

[15] Chen H S, Li X, Hua W J. Numerical simulation of the impact of land use/land cover change over China on regional climates during the last 20 years[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(2): 357-369.

[16] Li Z Q, Garand L. Estimation of surface albedo from space: A parameterization for global application[J]. Journal of Geophysical Research Atmospheres, 1994, 99(D4): 8335.

[17] Liang S L. Mapping daily snow/ice shortwave broadband albedo from moderate resolution imaging spectroradiometer (MODIS): The improved direct retrieval algorithm and validation with Greenland in situ measurement[J]. Journal of Geophysical Research Atmospheres, 2005, 110(D10): D10109.

[18] Liang S L. Narrowband to broadband conversions of land surface albedo I: Algorithms[J]. Remote Sensing of Environment, 2001, 76(2): 213-238.

[19] Liang S L, Shuey C J, Russ A L, et al. Narrowband to broadband conversions of land surface albedo: II. Validation[J]. Remote Sensing of Environment, 2003, 84(1): 25-41.

[20] Liang S L, Strahler A H, Walthall C. Retrieval of land surface albedo from satellite observations: a simulation study[J]. Journal of Applied Meteorology, 1999, 38(6): 712-725.

[21] Liang S L. A direct algorithm for estimating land surface broadband albedos from MODIS imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(1): 136-145.

[22] Dickinson R E. Land processes in climate models[J]. Remote Sensing of Environment, 1995, 51(1): 27-38.

[23] Wang K C, Liu J M, Zhou X J, et al. Retrieval of the surface albedo under clear sky over China and its characteristics analysis by using MODIS satellite date[J]. Chinese Journal of Atmospheric Sciences, 2004, 28(6): 941-949.

[24] Xu X K, Liu S H. Deriving monthly means surface aibedo of China[J]. Acta Meteorologica Sinica, 2002, 60(2): 215-220.

[25] Ghimire B, Williams C A, Masek J, et al. Global albedo change and radiative cooling from anthropogenic land cover change, 1700 to 2005 based on MODIS, land use harmonization, radiative kernels, and reanalysis[J]. Geophysical Research Letters,2014, 41(24): 9087-9096.

[26] Gao F, He T, Wang Z S, et al. Multiscale climatological albedo look-up maps derived from moderate resolution imaging spectroradiometer BRDF/albedo products[J]. Journal of Applied Remote Sensing, 2014, 8: 083532.

[27] Chen A J, Bian L G, Liu Y J, et al. Using MODIS data to retrieve albedo over the Qinghai-Tibet plateau[J]. Journal of Nanjing Institute of Meteorology, 2009, 32(2): 222-229.

[28] Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 1996, 77(3): 437-471.

[29] Kistler R, Collins W, Saha S, et al. The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation[J]. Bulletin of the American Meteorological Society, 2001, 82(2): 247-267.

[30] Hall D K, Riggs G A, Salomonson V V, et al. MODIS snow-cover products[J]. Remote Sensing of Environment, 2002, 83(1/2): 181-194.

[31] Schaaf C B, Gao F, Strahler A H, et al. First operational BRDF, albedo nadir reflectance products from MODIS[J]. Remote Sensing of Environment, 2002, 83(1/2): 135-148.

[32] Schaaf C B, Liu J C, Gao F, et al. Aqua and Terra MODIS Albedo and Reflectance Anisotropy Products[M]. Ramachandran B, Justice C O, Abrams M J. Land Remote Sensing and Global Environmental Change. New York: Springer, 2011: 549-561.

[33] Hurtt G C, Frolking S, Fearon M G, et al. The underpinnings of land-use history: Three centuries of global gridded land-use transitions, wood-harvest activity, and resulting secondary lands[J]. Global Change Biology, 2006, 12(7): 1208-1229.

[34] Hurtt G C, Chini L P, Frolking S, et al. Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands[J]. Climatic Change, 2011, 109(1/2): 117-161.

[35] Jiang X, Wang N L, Yang S P. Analysis of global radiation and surface albedo features in summer and autumn in a permafrost region of Tanggula range, Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2007, 29(6): 889-899.

[36] Liu Q Q, Cui Y P, Liu S J, et al. Study on surface albedo of spectral radiation of different land use types in China[J]. Remote Sensing Technology and Application, 2019, 34(1): 46-56.

[37] Chen A J, Cao X Y, Han C H, et al. Spatial-temporal distribution and variation of land surface albedo over the Tibetan Plateau during 2000-2016[J]. Climatic and Environmental Research, 2018, 23(3): 355-365.

[38] Yang J X, Li Z C, Wei Z G, et al. Characteristics of solar spectral radiation and corresponding albedo in sparse vegetation region[J]. Acta Energiae Solaris Sinica, 2017, 38(3): 852-859.

[39] Zheng Z Y, Wei Z G, Li Z C, et al. Study of parameterization of surface albedo of bare soil over the Gobi desert in the Dunhuang region[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(2): 297-308.

[40] 盛裴轩, 毛节泰, 李建国, 等. 大气物理学 (第 2 版)[M]. 北京: 北京大学出版社, 2013: 88-89.

[41] Li X W, Strahler A, Zhu Q J, et al. Geometric-optical bidirectional reflectance modelling of ground objects and its progress in measurement[J]. Remote Sensing for Land & Resources, 1991, 3(1): 9-19.

[42] Gannon P T. Influences of earth surface and cloud properties on the South Florida sea breeze[R]. NOAA Technical Report ERL402-NHELM2, 1978.

[43] Wu H Y, Tong L. Modeling visible and near-infrared snow surface reflectance-simulation and validation[J]. Chinese Optics Letters, 2011, 9(10): 102901-102903.

[44] Zhang Y L, Dang H S, Xia X L, et al. Retrieval of dynamic surface albedo in Taibai Mountain, Qinling[J]. Resources and Environment in the Yangtze Basin, 2010, 19 (S2): 135-140.

[45] Wu H Y. Research of Snow Surface Relfectance in Pixel Scale[D]. Chengdu: University of Electronic Science and Technology of China, 2012.

何娟, 张华, 苏红娟, 周喜讯, 陈琪, 谢冰, 游婷. 全球分光地表反照率的长期变化[J]. 大气与环境光学学报, 2022, 17(3): 279. HE Juan, ZHANG Hua, SU Hongjuan, ZHOU Xixun, CHEN Qi, XIE Bing, YOU Ting. Study on long-term change of global spectral surface albedo[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(3): 279.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!