人工晶体学报, 2023, 52 (6): 997, 网络出版: 2023-08-13  

太阳能电池的电势诱导衰减研究进展

Research Progress of Potential-Induced Degradation in Solar Cells
作者单位
1 中国科学院电工研究所, 中国科学院太阳能热利用及光伏系统重点实验室, 北京 100190
2 中国科学院大学, 北京 100049
3 安徽华晟新能源科技有限公司, 宣城 242000
摘要
在户外长期运行中, 不论是晶体硅太阳能电池还是薄膜太阳能电池, 都会受到电势诱导衰减(PID)的影响, 从而导致太阳能电池组件输出功率下降。尽管前人已经开展了许多研究, 但对PID现象的理解及解决方案仍旧不完整。本文主要介绍了晶体硅太阳能电池、薄膜太阳能电池的PID现象成因及相关解决办法, 以促进人们对太阳能电池PID现象的深入理解, 以期对太阳能电池的稳定性研究提供指导性意见。
Abstract
In long-term outdoor operation, both crystalline silicon solar cells and thin film solar cells are subject to potential-induced degradation (PID), decreasing the output power of photovoltaic modules. Despite numerous studies in the past, the understanding of the PID phenomenon and its solutions is still incomplete. In order to promote a deeper understanding of the PID phenomenon in solar cells and provide guidance for stability research of solar cells, the causes of PID in crystalline silicon solar cells and thin film solar cells, as well as related solutions are reviewed in this paper.
参考文献

[1] SHARMA V, CHANDEL S S. Performance and degradation analysis for long term reliability of solar photovoltaic systems: a review[J]. Renewable and Sustainable Energy Reviews, 2013, 27: 753-767.

[2] NDIAYE A, KB C M F, CHARKI A, et al. Photovoltaic platform for investigating PV module degradation[J]. Energy Procedia, 2015, 74: 1370-1380.

[3] LUO W, KHOO Y S, HACKE P, et al. Potential-induced degradation in photovoltaic modules: a critical review[J]. Energy & Environmental Science, 2017, 10(1): 43-68.

[4] BEDRICH K G, LUO W, PRAVETTONI M, et al. Quantitative electroluminescence imaging analysis for performance estimation of PID-influenced PV modules[J]. IEEE Journal of Photovoltaics, 2018, 8(5): 1281-1288.

[5] CAROLUS J, BREUGELMANS R, TSANAKAS J A, et al. Why and how to adapt PID testing for bifacial PV modules?[J]. Progress in Photovoltaics: Research and Applications, 2020, 28(10): 1045-1053.

[6] DHIMISH M, TYRRELL A M. Power loss and hotspot analysis for photovoltaic modules affected by potential induced degradation[J]. NPJ Materials Degradation, 2022, 6(11): 1-8.

[7] 勾宪芳. 晶硅太阳能电池组件电势诱发功率衰减行为及机理的研究[D]. 北京: 北京工业大学, 2018.

[8] Fraunhofer Center for Silicon Photovoltaics CSP. Fraunhofer CSP presents results of potential induced degradation (PID) [EB/OL]. [2015-05-13].http://www.en.csp.fraunhofer.de/press-and-events/details/id/857/.

[9] 向昱任, 周春兰, 王文静. 太阳电池PID现象的数值模拟分析[J]. 太阳能学报, 2015, 36(6): 1517-1521.

[10] ROSS R G, MON G R, WEN L C, et al. Measurement and characterization of voltage- and current-induced degradation of thin-film photovoltaic modules[J]. Solar Cells, 1989, 27(1/2/3/4): 289-298.

[11] SWANSON R, CUDZINOVIC M, DECEUSTER D, et al. The surface polarization effect in high-efficiency silicon solar cells[C]//Proceedings of the 15th International Photovoltaic Science & Engineering Conference. October 11-13, 2005, Shanghai, China, 2005: 410-413.

[12] YAMAGUCHI S, MASUDA A, MARUMOTO K, et al. Mechanistic understanding of polarization-type potential-induced degradation in crystalline-silicon photovoltaic cell modules[J]. Advanced Energy and Sustainability Research, 2023, 4(4): 2200167.

[13] YAMAGUCHI S, VAN AKEN B B, MASUDA A, et al. Potential-induced degradation in high-efficiency n-type crystalline-silicon photovoltaic modules: a literature review[J]. Solar RRL, 2021, 5(12): 2100708.

[14] KOMATSU Y, YAMAGUCHI S, MASUDA A, et al. Multistage performance deterioration in n-type crystalline silicon photovoltaic modules undergoing potential-induced degradation[J]. Microelectronics Reliability, 2018, 84: 127-133.

[15] HALM A, SCHNEIDER A, MIHAILETCHI V D, et al. Potential-induced degradation for encapsulated n-type IBC solar cells with front floating emitter[J]. Energy Procedia, 2015, 77: 356-363.

[16] YAMAGUCHI S, JONAI S, NAKAMURA K, et al. Polarization-type potential-induced degradation in front-emitter p-type and n-type crystalline silicon solar cells[J]. ACS Omega, 2022, 7(41): 36277-36285.

[17] SPORLEDER K, NAUMANN V, BAUER J, et al. Root cause analysis on corrosive potential-induced degradation effects at the rear side of bifacial silicon PERC solar cells[J]. Solar Energy Materials and Solar Cells, 2019, 201: 110062.

[18] KOENTOPP M B, KRBER M, TAUBITZ C. Toward a PID test standard: understanding and modeling of laboratory tests and field progression[J]. IEEE Journal of Photovoltaics, 2016, 6(1): 252-257.

[19] HACKE P, TERWILLIGER K, GLICK S, et al. Interlaboratory study to determine repeatability of the damp-heat test method for potential-induced degradation and polarization in crystalline silicon photovoltaic modules[J]. IEEE Journal of Photovoltaics, 2015, 5(1): 94-101.

[20] LAUSCH D, NAUMANN V, BREITENSTEIN O, et al. Potential-induced degradation (PID): introduction of a novel test approach and explanation of increased depletion region recombination[J]. IEEE Journal of Photovoltaics, 2014, 4(3): 834-840.

[21] HACKE P, KEMPE M, TERWILLIGER K, et al. Characterization of multicrystalline silicon modules with system bias voltage applied in damp heat[R]. 25th European Photovoltaic Solar Energy Conference and Exhibition. September 6-10, 2010, Valencia, Spain,2010: 3760-3765.

[22] HOFFMANN S, KOEHL M. Effect of humidity and temperature on the potential-induced degradation[J]. Progress in Photovoltaics: Research and Applications, 2014, 22(2): 173-179.

[23] SUZUKI S, NISHIYAMA N, YOSHINO S, et al. Acceleration of potential-induced degradation by salt-mist preconditioning in crystalline silicon photovoltaic modules[J]. Japanese Journal of Applied Physics, 2015, 54(8S1): 08KG08.

[24] BAUER J, NAUMANN V, GROER S, et al. On the mechanism of potential-induced degradation in crystalline silicon solar cells[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2012, 6(8): 331-333.

[25] NAUMANN V, LAUSCH D, GROER S, et al. Microstructural analysis of crystal defects leading to potential-induced degradation (PID) of Si solar cells[J]. Energy Procedia, 2013, 33: 76-83.

[26] NAUMANN V, LAUSCH D, GRAFF A, et al. The role of stacking faults for the formation of shunts during potential-induced degradation of crystalline Si solar cells[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2013, 7(5): 315-318.

[27] NAUMANN V, LAUSCH D, HHNEL A, et al. Explanation of potential-induced degradation of the shunting type by Na decoration of stacking faults in Si solar cells[J]. Solar Energy Materials and Solar Cells, 2014, 120(Part A): 383-389.

[28] HARA K, JONAI S, MASUDA A. Potential-induced degradation in photovoltaic modules based on n-type single crystalline Si solar cells[J]. Solar Energy Materials and Solar Cells, 2015, 140: 361-365.

[29] BAE S, OH W, LEE K D, et al. Potential induced degradation of n-type crystalline silicon solar cells with p+ front junction[J]. Energy Science & Engineering, 2017, 5(1): 30-37.

[30] YAMAGUCHI S, YAMAMOTO C, OHDAIRA K, et al. Reduction in the short-circuit current density of silicon heterojunction photovoltaic modules subjected to potential-induced degradation tests[J]. Solar Energy Materials and Solar Cells, 2017, 161: 439-443.

[31] YAMAGUCHI S, YAMAMOTO C, OHDAIRA K, et al. Comprehensive study of potential-induced degradation in silicon heterojunction photovoltaic cell modules[J]. Progress in Photovoltaics: Research and Applications, 2018, 26(9): 697-708.

[32] MCMAHON T J. Accelerated testing and failure of thin-film PV modules[J]. Progress in Photovoltaics: Research and Applications, 2004, 12(2/3): 235-248.

[33] VOSWINCKEL S, MANZ P, SCHMIDT C, et al. Investigation of leakage currents depending on the mounting situation in accordance to amorphous silicon modules[J]. Energy Procedia, 2014, 57: 56-64.

[34] PINGEL S, FRANK O, WINKLER M, et al. Potential Induced Degradation of solar cells and panels[C]//2010 35th IEEE Photovoltaic Specialists Conference. June 20-25, 2010. Honolulu, HI, USA. IEEE, 2010: 002817-002822.

[35] 吴玲玲. 碲化镉薄膜太阳电池制备及载流子复合的研究[D]. 合肥: 中国科学技术大学, 2022.

[36] OLSSON N A, RICHARDSON M C, HEVELONE J. Thin film PID field failures and root cause determination[C]//2014 IEEE 40th Photovoltaic Specialists Conference (PVSC) Volume 2. June 8-13, 2014, Denver, CO, USA. IEEE, 2016: 1-4.

[37] HACKE P, SPATARU S, JOHNSTON S, et al. Elucidating PID degradation mechanisms and in situ dark I-V monitoring for modeling degradation rate in CdTe thin-film modules[J]. IEEE Journal of Photovoltaics, 2016, 6(6): 1635-1640.

[38] LIU J, JOHNSTON S, HARVEY S P, et al. Transmission electron microscopy study on degradation mechanism of CdTe thin-film solar cells[C]//2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). June 10-15, 2018. Waikoloa Village, HI. IEEE, 2018: 3281-3284.

[39] 陶加华, 褚君浩. 铜铟镓硒薄膜太阳电池研究进展和挑战[J]. 红外与毫米波学报, 2022, 41(2): 395-412.

[40] FJLLSTRM V, SALOM P M P, HULTQVIST A, et al. Potential-induced degradation of CuIn1-xGaxSe2 thin film solar cells[J]. IEEE Journal of Photovoltaics, 2013, 3(3): 1090-1094.

[41] MUZZILLO C P, GLYNN S, HACKE P, et al. Potential-induced degradation of Cu(In, Ga)Se2 solar cells: alkali metal drift and diffusion effects[J]. IEEE Journal of Photovoltaics, 2018, 8(5): 1337-1342.

[42] YAMAGUCHI S, JONAI S, HARA K, et al. Potential-induced degradation of Cu(In, Ga)Se2 photovoltaic modules[J]. Japanese Journal of Applied Physics, 2015, 54: 08KC13.

[43] OSTERWALD C R, MCMAHON T J, DEL CUETO J A. Electrochemical corrosion of SnO2∶F transparent conducting layers in thin-film photovoltaic modules[J]. Solar Energy Materials and Solar Cells, 2003, 79(1): 21-33.

[44] MASUDA A, HARA Y. Potential-induced degradation of thin-film Si photovoltaic modules[J]. Japanese Journal of Applied Physics, 2017, 56: 04CS04.

[45] CARLSON D E, ROMERO R, WILLING F, et al. Corrosion effects in thin-film photovoltaic modules[J]. Progress in Photovoltaics: Research and Applications, 2003, 11(6): 377-386.

[46] JANSEN K W, DELAHOY A E. A laboratory technique for the evaluation of electrochemical transparent conductive oxide delamination from glass substrates[J]. Thin Solid Films, 2003, 423(2): 153-160.

[47] RONG Y G, HU Y, MEI A Y, et al. Challenges for commercializing perovskite solar cells[J]. Science, 2018, 361(6408): eaat8235.

[48] CAROLUS J, MERCKX T, PUROHIT Z, et al. Potential-induced degradation and recovery of perovskite solar cells[J]. Solar RRL, 2019, 3(10): 1900226.

[49] PUROHIT Z, SONG W Y, CAROLUS J, et al. Impact of potential-induced degradation on different architecture-based perovskite solar cells[J]. Solar RRL, 2021, 5(9): 2100349.

[50] XU L J, LIU J, LUO W, et al. Potential-induced degradation in perovskite/silicon tandem photovoltaic modules[J]. Cell Reports Physical Science, 2022, 3(9): 101026.

[51] GOU X F, LI X Y, ZHOU S, et al. PID testing method suitable for process control of solar cells mass production[J]. International Journal of Photoenergy, 2015, 2015: 1-5.

[52] WILSON M, SAVTCHOUK A, EDELMAN P, et al. Drift characteristics of mobile ions in SiNx films and solar cells[J]. Solar Energy Materials and Solar Cells, 2015, 142: 102-106.

[53] YAMAGUCHI S, MASUDA A, OHDAIRA K. Progression of rapid potential-induced degradation of n-type single-crystalline silicon photovoltaic modules[J]. Applied Physics Express, 2016, 9(11): 112301.

[54] OH K S, BAE S, LEE K J, et al. Mitigation of potential-induced degradation (PID) based on anti-reflection coating (ARC) structures of PERC solar cells[J]. Microelectronics Reliability, 2019, 100/101: 113462.

[55] JONAI S, HARA K, TSUTSUI Y, et al. Relationship between cross-linking conditions of ethylene vinyl acetate and potential induced degradation for crystalline silicon photovoltaic modules[J]. Japanese Journal of Applied Physics, 2015, 54: 08KG01.

[56] LUO W, HACKE P, TERWILLIGER K, et al. Elucidating potential-induced degradation in bifacial PERC silicon photovoltaic modules[J]. Progress in Photovoltaics: Research and Applications, 2018, 26(10): 859-867.

[57] PARK N C, OH W W, KIM D H. Effect of temperature and humidity on the degradation rate of multicrystalline silicon photovoltaic module[J]. International Journal of Photoenergy, 2013, 2013: 1-9.

[58] OHDAIRA K, KOMATSU Y, SUZUKI T, et al. Influence of sodium on the potential-induced degradation for n-type crystalline silicon photovoltaic modules[J]. Applied Physics Express, 2019, 12(6): 064004.

[59] JONAI S, MASUDA A. Origin of Na causing potential-induced degradation for p-type crystalline Si photovoltaic modules[J]. AIP Advances, 2018, 8(11): 115311.

[60] OH J, TAMIZHMANI G, BOWDEN S, et al. Surface disruption method with flexible glass to prevent potential-induced degradation of the shunting type in PV modules[J]. IEEE Journal of Photovoltaics, 2017, 7(1): 62-67.

[61] SCHULZE S H, APEL A, MEITZNER R, et al. Influence of polymer properties on potential induced degradation of PV-modules[C]//28th European Photovoltaic Solar Energy Conference. September 30-October 4, 2013, Paris, France,2013: 503-507.

[62] SCHWARK M, BERGER K, EBNER R, et al. Investigation of potential induced degradation (PID) of solar modules from different manufacturers[C]//IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society. November 10-13, 2013, Vienna, Austria. IEEE, 2014: 8090-8097.

[63] NAGEL H, METZ A, WANGEMANN K. Crystalline Si solar cells and modules featuring excellent stability against potential-induced degradation[C]//26th European Photovoltaic Solar Energy Conference and Exhibition. September 5-9, 2011, Hamburg, Germany, 2011: 3107-3112.

徐晓华, 杨金利, 周春兰, 周肃, 王文静. 太阳能电池的电势诱导衰减研究进展[J]. 人工晶体学报, 2023, 52(6): 997. XU Xiaohua, YANG Jinli, ZHOU Chunlan, ZHOU Su, WANG Wenjing. Research Progress of Potential-Induced Degradation in Solar Cells[J]. Journal of Synthetic Crystals, 2023, 52(6): 997.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!