光学技术, 2023, 49 (3): 270, 网络出版: 2023-11-26  

基于银纳米颗粒等离激元共振和耦合效应的彩色透明显示屏

A Full-color transparent display screen based on plasmon resonance and coupling effect of silver nanoparticles
作者单位
郑州航空工业管理学院 材料学院, 河南 郑州 450046
摘要
提出一种基于银纳米颗粒等离激元共振和耦合效应的彩色透明显示屏。对银颗粒优化设计,说明在红、绿、蓝三波段能够出现三个散射峰,可用于增强彩色显示性能;接下来,通过溶液热法制备出该屏幕;经投影仪对屏投影测试发现确实具有彩色、高透、高亮和宽视角。另外,研究发现在等离激元共振及耦合作用下,银颗粒在红、绿、蓝三个共振位置均具有偶极子的远场散射形貌,充分解释了显示屏高亮和宽视角的原因。提出的透明显示屏具有透明度和亮度高、观察视角宽、制备工艺简单、成本低等特点,在透明显示领域将有大的应用潜力。
Abstract
A novel full-color transparent display screen based on the plasmon resonance and coupling effect of silver nanoparticles is proposed. Firstly, it shows that the optimized silver particles can support three scattering peaks respectively in the red, green and blue wavebands, which can be used to enhance the performance of full-color transparent display. Secondly, It experimentally demonstrates that, through a simple solution thermal method, the optimized silver nanoparticles can be embedded in the transparent matrix material to form a transparent display screen. The projector-to-screen projection test further proves that this screen indeed presents the full-color display with high transparency, high brightness and wide viewing angle. In addition, It also demonstrates that the silver nanoparticles have the dipole-type far-field scattering patterns at the three resonance wavelengths of red, green and blue due to the plasmon resonance and coupling effect, which well explains the reasons of the display screen with high brightness and wide viewing angle. The transparent display screen proposed r with the characteristics of high transparency and brightness, wide viewing angle, simple preparation process and low cost, will have potential applications in the field of transparent display.
参考文献

[1] Hsu C W, Zhen B, Qiu W, et al. Transparent displays enabled by resonant nanoparticle scattering[J]. Nature Communications,2014,5:3152.

[2] Hedili M K, Freeman M O, Urey H. Microstructured head-up display screen for automotive applications[J]. Proceedings of SPIE - The International Society for Optical Engineering,2012,8428(1):84280X-1-84280X-6.

[3] Grrn P, Sander M, Meyer J, et al. Towards See-Through Displays: Fully transparent thin-Film transistors driving transparent organic light-emitting diodes[J]. Advanced Materials,2006,18(6):738-741.

[4] Hedili M K, Freeman M O, Urey H. Microlens array-based high-gain screen design for direct projection head-up displays[J]. Applied Optics,2013,52 (6):1117-1351.

[5] Goldenberg J F, McKechnie T S. Diffraction analysis of bulk diffusers for projection-screen applications[J]. Journal of the Optical Society of America A,1985,2(12):2337-2347.

[6] Hedili M K, Freeman M O, Urey H. Transmission characteristics of a bidirectional transparent screen based on reflective microlenses[J]. Optics Express,2013,21(21):24636-24646.

[7] Hong K, Yeom J, Jang C, et al. Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality[J]. Optics Letters,2014,39(1):127-130.

[8] Soomro S R, Urey H. Design, fabrication and characterization of transparent retro-reflective screen[J]. Optics Express,2016,24(21):24232-24241.

[9] Sepúlveda B, Angelomé P C, Lechuga L M, et al. LSPR-based nanobiosensors[J]. Nano Today,2009,4(3):244-251.

[10] Zhu S Y, Li H, Yang M S, et al. Label-free detection of live cancer cells and DNA hybridization using 3D multilayered plasmonic biosensor[J].Nanotechnology,2018,29:365503.

[11] Li J F, Huang Y F, Ding Y, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature,2010,464:392-395.

[12] Ebbesen T W, Genet C, Bozhevolnyi S I. Surface-plasmon circuitry[J]. Physics Today,2008,61(5):44-50.

[13] Kosako T, Kadoya Y, Hofmann H F. Directional control of light by a nano-optical Yagi–Uda antenna[J]. Nature Photonics,2010,4:312-315.

[14] 王振林. 表面等离激元研究新进展[J]. 物理学进展,2009,3:287-324.

[15] Saito K, Tatsuma T. A transparent projection screen based on plasmonic Ag nanocubes[J]. Nanoscale,2015,7(48):20365-20368.

[16] Ye Y, Chen T, Zhen J, et al. Resonant scattering of green light enabled by Ag@TiO2 and its application in a green light projection screen[J]. Nanoscale,2018,10(5):2438-2446.

[17] Soomro S R, Urey H. Light-efficient augmented reality 3D display using highly transparent retro-reflective screen[J]. Applied Optics,2017,56(22):6108-6113.

[18] Barnes W L, Alain D, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature,2003,424:824-830.

[19] Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics,2010,4:83-91.

[20] Shin S H, Hwang B, Zhao Z J, et al. Transparent displays utilizing nanopatterned quantum dot films[J]. Scientific Reports,2018,8(1):2463-2472.

[21] Bohren C F. Absorption and scattering of light by small particls[M]. Huffman D R. New York: Wiley,1983:475-476.

[22] Johnson P B, Christy R W. Optical constants of the noble metals[J]. Physical Review B,1972,6(12):4370-4379.

[23] Meng C L, Chen E G, et al. Color-switchable liquid crystal smart window with multi-layered light guiding structures[J]. Optics Express,2019:13098-13107.

谭茜文, 秦怡恒, 钟发成, 麻华丽, 杨润, 燕汝江, 任思萌, 褚博, 李艳. 基于银纳米颗粒等离激元共振和耦合效应的彩色透明显示屏[J]. 光学技术, 2023, 49(3): 270. TAN Qianwen, QIN Yiheng, ZHONG Facheng, MA Huali, YANG Run, YAN Rujiang, REN Simeng, CHU Bo, LI Yan. A Full-color transparent display screen based on plasmon resonance and coupling effect of silver nanoparticles[J]. Optical Technique, 2023, 49(3): 270.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!