应用激光, 2023, 43 (6): 0049, 网络出版: 2024-02-02  

10激光熔覆铝合金表面制备高熵合金工艺参数分析

Analysis of Process Parameters of Laser Cladding on Aluminum Alloy Surface to Prepare High-Entropy Alloy
作者单位
吉林工业职业技术学院,吉林 吉林 132013
摘要
通过研究不同参数下高熵合金熔覆层的显微组织、相的组成,并将晶界与树枝晶元素原子量进行对比分析,揭示工艺参数对激光熔覆制备高熵合金的影响。结果表明:在激光功率一定的条件下,AlCoCrCuFeNi高熵合金相结构随着扫描速度的增加逐渐由bcc相变为bcc相+fcc相;对比熔铸法,激光熔覆铝合金制备多了1个以Al元素为主的fcc固溶体相。高熵合金主要由底部的树枝晶向顶部的等轴晶发展。通过EDS分析发现,熔覆过程中Al元素偏析严重,Cu元素在晶界处有少量偏析,且扫描速度对合金质量影响明显。
Abstract
By studying the microstructure, phase composition, and atomic weight of grain boundaries and dendrite elements of the high-entropy alloy cladding layer under different parameters, the effects of process parameters on the preparation of high-entropy alloys by laser cladding were revealed. The results show that under the constant laser power, the phase structure of AlCoCrCuFeNi high-entropy alloy gradually changes from bcc phase to bcc phase +fcc phase with the increase of scanning speed. Compared with the melting and casting method, the laser cladding aluminum alloy has an additional fcc solid solution phase mainly composed of Al element. The high-entropy alloys mainly develop from dendrites at the bottom to equiaxed crystals at the top. Through EDS analysis, it is found that Al element segregates seriously, and Cu element has a small amount of segregation at the grain boundary. The scanning speed has a significant effect on the alloy quality.
参考文献

[1] LI C, MUNEHARUA K, TAKAO S, et al. Fiber laser-GMA hybrid welding of commercially pure titanium[J]. Materials & Design, 2009, 30(1): 109-114.

[2] 盛洪飞. AlxCoCrCuFeNi系高熵合金及其复合材料的制备、微结构与性能研究[D]. 合肥: 中国科学技术大学, 2014.SHENG H F. Study on preparation, microstructure and properties of AlxCoCrCuFeNi high entropy alloy and its composites[D].Hefei: University of Science and Technology of China, 2014.

[3] 漆陪部, 梁秀兵, 仝永刚, 等. NbMoTaW高熵合金涂层的制备与表征[J]. 应用激光, 2018, 38(3): 382-386.QI P B, LIANG X B, TONG Y G, et al. Preparation and characterization of NbMoTaW high entropy alloy coating[J]. Applied Laser, 2018, 38(3): 382-386.

[4] LI J F, XIANG S, LUAN H W, et al. Additive manufacturing of high-strength CrMnFeCoNi high-entropy alloys-based composites with WC addition[J]. Journal of Materials Science & Technology, 2019, 35(11): 2430-2434.

[5] WEI Q Q, SHEN Q, ZHANG J, et al. Microstructure evolution, mechanical properties and strengthening mechanism of refractory high-entropy alloy matrix composites with addition of TaC[J]. Journal of Alloys and Compounds, 2019, 777: 1168-1175.

[6] GUO Y X, LIU Q B, SHANG X J. In situ TiN-reinforced CoCr2FeNiTi0.5 high-entropy alloy composite coating fabricated by laser cladding[J]. Rare Metals, 2020, 39(10): 1190-1195.

[7] WOLFF E G. An introduction to metal/matrix composites[J]. Materials Research Bulletin, 1995, 30(12): 1585-1587.

[8] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303.

[9] 刘源, 陈敏, 李言祥, 等. AlxCoCrCuFeNi多主元高熵合金的微观结构和力学性能[J]. 稀有金属材料与工程, 2009, 38(9): 1602-1607.LIU Y, CHEN M, LI Y X, et al. Microstructure and mechanical performance of AlxCoCrCuFeNi high-entropy alloys[J]. Rare Metal Materials and Engineering, 2009, 38(9): 1602-1607.

[10] 倪晓杰, 刘福康, 胡肇炜, 等. 激光熔覆Mo2NiB2熔覆层的制备及其性能表征[J]. 应用激光, 2021, 41(1): 122-130.NI X J, LIU F K, HU Z W, et al. Preparation and characterization of laser cladding Mo2NiB2 cladding layer[J]. Applied Laser, 2021, 41(1): 122-130.

[11] TTEN N, CANADINC D, MOTALLEBZADEH A, et al. Microstructure and tribological properties of TiTaHfNbZr high entropy alloy coatings deposited on Ti6Al4V substrates[J]. Intermetallics, 2019, 105: 99-106.

[12] 宋建丽, 李永堂, 邓琦林, 等. 激光熔覆成形技术的研究进展[J]. 机械工程学报, 2010, 46(14): 29-39.SONG J L, LI Y T, DENG Q L, et al. Research progress of laser cladding forming technology[J]. Journal of Mechanical Engineering, 2010, 46(14): 29-39.

[13] 畅泽欣, 马明锋, 葛亚琼, 等. 选择性激光熔化成形高熵合金CoCrFeMnNi的温度场数值模拟研究[J]. 应用激光, 2022, 42(2): 48-53.CHANG Z X, MA M F, GE Y Q, et al. Numerical simulation study on temperature field of high entropy alloy CoCrFeMnNi formed by selective laser melting[J]. Applied Laser, 2022, 42(2): 48-53.

[14] SENKOV O N, SCOTT J M, SENKOVA S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy[J]. Journal of Alloys and Compounds, 2011, 509(20): 6043-6048.

[15] WU J M, LIN S J, YEH J W, et al. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content[J]. Wear, 2006, 261(5/6): 513-519.

[16] 杨洗陈, 栗丽, 张烨. 激光熔覆中同轴粉末流温度场的数值模拟[J]. 光学学报, 2009, 29(11): 3114-3120.YANG X C, LI L, ZHANG Y. Numerical simulation of temperature field of coaxial powder flow in laser cladding[J]. Acta Optica Sinica, 2009, 29(11): 3114-3120.

[17] 栗丽, 杨洗陈, 董哲. 激光熔覆中同轴粉末流温度场的CCD检测[J]. 中国激光, 2009, 36(9): 2431-2437.LI L, YANG X C, DONG Z. CCD measurement of temperature field of coaxial powder flow in laser cladding[J]. Chinese Journal of Lasers, 2009, 36(9): 2431-2437.

[18] 周丹, 郭计山, 熊大辉, 等. TiC含量对激光熔覆铁基涂层特性的影响[J]. 应用激光, 2021, 41(6): 1189-1195.ZHOU D, GUO J S, XIONG D H, et al. Effect of TiC content on the properties of Fe based coating by laser cladding[J]. Applied Laser, 2021, 41(6): 1189-1195.

[19] 张传鹏, 雷剑波, 方艳, 等. 激光熔凝过程中金属熔池光谱检测[J]. 应用激光, 2013, 33(5): 487-492.ZHANG C P, LEI J B, FANG Y, et al. Measurement of spectrum distribution of metal molten pool in laser melting[J]. Applied Laser, 2013, 33(5): 487-492.

[20] 洪蕾, 胡肇炜, 马保亮. 激光熔覆熔凝过程等离子体光信号的监测[J]. 中国激光, 2011, 38(2): 0203006.HONG L, HU Z W, MA B L. Monitoring of plasma optical signal in laser cladding and melting process[J]. Chinese Journal of Lasers, 2011, 38(2): 0203006.

孙静. 10激光熔覆铝合金表面制备高熵合金工艺参数分析[J]. 应用激光, 2023, 43(6): 0049. Sun Jing. Analysis of Process Parameters of Laser Cladding on Aluminum Alloy Surface to Prepare High-Entropy Alloy[J]. APPLIED LASER, 2023, 43(6): 0049.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!