压电与声光, 2023, 45 (2): 169, 网络出版: 2023-11-29  

基于铌酸锂/BCB/聚酰亚胺结构的柔性声表面波器件的设计与仿真

Design and Simulation of Flexible Surface Acoustic Wave Device Based on Lithium Niobate/BCB/Polyimide Structure
作者单位
电子科技大学 电子科学与工程学院, 四川 成都 611731
摘要
该文采用有限元法对“铌酸锂/苯并环丁烯(BCB)/聚酰亚胺”结构的柔性声表面波器件进行了研究。结果表明, 铌酸锂厚度为0.06λ~0.8λ(λ为周期)时, 不能激发稳定的瑞利波, 在此区间外可激发瑞利波。随着温度升高, 器件的谐振频率降低, 计算结果表明, 声速随温度变化是谐振频率下降的主要原因, 大于热膨胀引起的谐振频率变化。仿真结果为设计和制备柔性声表面波器件时合理选择压电薄膜厚度及衬底材料力学性能等参数提供了一定的理论依据。
Abstract
In this paper, a flexible surface acoustic wave device with “lithium niobate /benzocyclobutene(BCB)/ polyimide” structure is simulated and studied by finite element simulation method. The results show that the stable Rayleigh wave cannot be excited when the thickness of lithiumniobate(LN) is between 0.06λ~0.8λ, while outside this interval, Rayleigh waves can be excited. When the temperature increases, the resonant frequency of the device decreases. The calculation results show that the change of sound velocity with temperature is the main reason, which is greater than the frequency shift caused by thermal expansion. The simulation results in this paper provide a theoretical basis for the reasonable selection of piezoelectric film thickness and mechanical properties of substrate materials when designing and fabricating flexible surface acoustic wave devices.
参考文献

[1] LIU Bo,CHEN Xiao,CAI Hualin,et al.Surface acoustic wave devices for sensor applications[J].Journal of Semiconductors,2016,37(2):021001.

[2] ZHOU Xuhang,TAN Qiulin,LIANG Xiaorui,et al.Novel multilayer SAW temperature sensor for ultra-high temperature environments[J].Micromachines,2021,12(6):643.

[3] LEE J W,LEE B,KIM J W,et al.Surface acoustic wave-based infrared sensor with aluminum nitride films deposited[J].IEEE Sensors Journal,2020,20(22):13277-13283.

[4] MOHAMMAD A,SULTAN S M,TAN M L P.Design and simulation of 2D zinc oxide based SAW gas sensor for hydrogen gas sensing[C]//Kuala Lumpur:2022 IEEE International Conference on Semiconductor Electronics (ICSE), IEEE,2022:57-60.

[5] LI Ling,PENG Bin,ZHU Jialiang,et al.Strain measurements with langasite SAW resonators at high temperature[J].IEEE Sensors Journal,2020,21(4):4688-4695.

[6] WANG Yu,LUO Yijie,QIU Lei.Simulation method of an expandable Lamb wave sensor network for aircraft smart skin[J].IEEE Sensors Journal,2019,20(1):102-112.

[7] JILANI S F,LEFF D,MASKAYA,et al.Static strain modelling,calibration,and measurements for high-temperature wireless SAW resonator operation[C]//Las Vegas:2020 IEEE International Ultrasonics Symposium (IUS),IEEE,2020:1-4.

[8] STOUKATCH S,FRANCIS L A,DUPONT F,et al.Low-cost microfluidic device micromachining and sequential integration with SAW sensor intended for biomedical applications[J].Sensors and Actuators A:Physical,2021,319:112526.

[9] ZU Hongfei,WANG Yizhong,XIE Jiemin,et al.Surface acoustic wave mass sensor based on 128°YX-cut Lithium Niobate for thermogravimetric analysis[C]// Chicago:2014 IEEE International Ultrasonics Symposium,IEEE,2014:2544-2547.

[10] NICOLAY P,CHAMBON H,BRUCKNER G,et al.A LN/Si-based SAW pressure sensor[J].Sensors,2018,18(10):3482.

[11] TANG Yongliang,XU Xiaofeng,HAN Shaobo,et al.ZnO-Al2O3 nanocomposite as a sensitive layer for high performance surface acoustic wave H2S gas sensor with enhanced elastic loading effect[J].Sensors and Actuators B:Chemical,2020,304:127395.

[12] WARNER A W,ONOE M,COQUIN G A.Determination of elastic and piezoelectric constants for crystals in class (3m)[J].The Journal of the Acoustical Society of America,1967,42(6):1223-1231.

[13] SHUAI Yao,GONG Chaoguan,BAI Xiaoyuan,et al.Fabrication of Y128-and Y36-cut lithium niobate single-crystalline thin films by crystal-ion-slicing technique[J].Jpn J Appl Phys,2018,57(4S):04FK05.

[14] XIANG Bingxi,GUAN Jing,JIAO Yang,et al.Fabrication of ion-sliced lithium niobate slabs using helium ion implantation and Cu-Sn bonding[J].Physica Status Solidi (A),2014,211(10):2416-2420.

[15] ZHAO Shuai,ZHU Rong.Flexible bimodal sensor for simultaneous and independent perceiving of pressure and temperature stimuli[J].Advanced Materials Technologies,2017,2(11):1700183.

[16] BOUCHY S,ZEDNIK R J,BLANGER P.Characterization of the elastic,piezoelectric,and dielectric properties of lithium niobate from 25 ℃ to 900 ℃ using electrochemical impedance spectroscopy resonance method[J].Materials,2022,15(13):4716.

[17] 钟楠.高性能硅氧/硅碳杂化苯并环丁烯树脂[D].绵阳: 西南科技大学,2019.

[18] 刘钟喆.三维集成玻璃基板材料的键合技术研究[D].成都: 电子科技大学,2021.

[19] MATWE B.Overview of materials for polyimide[EB/OL].https://www.matweb.com/search/DataSheet.aspx?MatGUID=ab35b368ab9c40848f545c35bdf1a672,2022-11-16.

[20] 潘峰.声表面波材料与器件[M].北京:科学出版社, 2012.

[21] 艾罡.纳米氧化铝(Al2O3)/聚酰亚胺(PI)杂化薄膜的制备及性能研究[J].陶瓷,2020(1):23-29.

陈健中, 彭斌, 张万里, 林庚辉, 高令桥. 基于铌酸锂/BCB/聚酰亚胺结构的柔性声表面波器件的设计与仿真[J]. 压电与声光, 2023, 45(2): 169. CHEN Jianzhong, PENG Bin, ZHANG Wanli, LIN Genghui, GAO Lingqiao. Design and Simulation of Flexible Surface Acoustic Wave Device Based on Lithium Niobate/BCB/Polyimide Structure[J]. Piezoelectrics & Acoustooptics, 2023, 45(2): 169.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!