量子电子学报, 2018, 35 (4): 402, 网络出版: 2018-08-24  

基于锁相环路的拉曼激光制备及其相位噪声研究

Investigation of preparation and phase noise of Raman laser based on optical phase-locked loop
曹雷 1,2,3,*鲁思滨 1,2,3王锴 1,2,3姚战伟 1,2李润兵 1,2王谨 1,2詹明生 1,2
作者单位
1 中国科学院武汉物理与数学研究所波谱与原子分子物理国家重点实验室, 湖北 武汉 430071
2 中国科学院冷原子物理中心, 湖北 武汉 430071
3 中国科学院大学, 北京 100049
摘要
原子干涉仪在精密测量和惯性导航领域都有着重要前景,而高精度的原子干涉仪 对低相位噪声、高输出功率的拉曼激光有迫切需求。设计了基于光学锁相环路的双波长激光同步 注入放大拉曼激光制备方案,实现了大功率拉曼激光的制备,拉曼光注入放大前后的相位噪声均低于-80 dBc@0.01~1 MHz, 输出总功率达到了400 mW, 可满足原子干涉精密测量的需求。
Abstract
Atom interferometry has important prospect in the precise measurement and inertial navigation fields. The high-precision atom interferometer has an urgent need for Raman lasers with low phase noise and high output power. A dual-wavelength synchronous injection-amplification Raman laser preparation scheme based on optical phase-locked loop is designed, and the preparation of high-power Raman laser is achieved. The phase noises of Raman lasers before and after amplification are both below -80 dBc@0.01~1 MHz, and the total output power reaches 400 mW, which can meet the needs of atom interferometer based precision measurement.
参考文献

[1] Wang J. Precision measurement with atom interferometry [J]. Chinese Physics B, 2015, 24(5): 93-102.

[2] Wang J, Zhou L, Li R B, et al. Cold atom interferometers and their applications in precision measurements [J]. Frontiers of Physics, 2009, 4(2): 179-189.

[3] Li R B, Wang J, Zhan M S. Cold atom interferometers and their applications in space [J]. Physics(物理), 2008, 37(9): 652-657 (in Chinese).

[4] Zhou L, Long S T, Tang B, et al. Test of equivalence principle at 108 level by a dual-species double-diffraction Raman atom interferometer [J]. Physical Review Letters, 2015, 115(1): 013004.

[5] Schlippert D, Hartwig J, Albers H, et al. Quantum test of the universality of free fall [J]. Physical Review Letters, 2014, 112(20): 203002.

[6] Tarallo M G, Mazzoni T, Poli N, et al. Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: Search for spin-gravity coupling effects [J]. Physical Review Letters, 2014, 113(2): 023005.

[7] Fixler J B, Foster G T, McGuirk J M, et al. Atom interferometer measurement of the Newtonian constant of gravity [J]. Science, 2007, 315(5808): 74-77.

[8] Rosi G, Sorrentino F, Cacciapuoti L, et al. Precision measurement of the Newtonian gravitational constant using cold atoms [J]. Nature, 2014, 510(7506): 518-521.

[9] Weiss D S, Young B C, Chu S. Precision measurement of h/m Cs based on photon recoil using laser-cooled atoms and atom interferometry [J]. Applied Physics B-Laser and Optics, 1994, 59(3): 217-256.

[10] Hu Z K, Sun B L, Duan X C, et al. Demonstration of an ultrahigh sensitivity atom-interferometry absolute gravimeter [J]. Physical Review A, 2013, 88(4): 043610.

[11] Peters A, Chung K Y, Chu S. Measurement of gravitational acceleration by dropping atoms [J]. Nature, 1999, 400(6747): 849-852.

[12] Zhou L, Xiong Z Y, Yang W, et al. Measurement of local gravity via a cold atom interferometer [J]. Chinese Physics Letters, 2011, 28(1): 013701.

[13] Zhou L, Xiong Z Y, Yang W, et al. Development of an atom gravimeter and of the 10-meter atom interferometer for precision gravity measurement [J]. General Relativity and Gravitation, 2011, 43(7): 1931-1942.

[14] McGuirk J M, Foster G T, et al. Sensitive absolute-gravity gradiometry using atom interferometry [J]. Physical Review A, 2002, 65(3): 033608.

[15] Duan X C, Zhou M K, Mao D K, et al. Operating an atom-interferometry-based gravity gradiometer by the dual-fringe-locking method [J]. Physical Review A, 2014, 90(2): 023617.

[16] Canuel B, Leduc F, Holleville D, et al. Six-axis inertial sensor using cold-atom interferometry [J]. Physical Review Letters, 2006, 97(1): 010402.

[17] Stockton J K, Takase K, Kasevich M A. Absolute geodetic rotation measurement using atom interferometry [J]. Physical Review Letters, 2011, 107(13): 133001.

[18] Yao Z W, Lu S B, et al. Continuous dynamic rotation measurements using a compact cold atom gyroscope [J]. Chinese Physics Letters, 2016, 33(8): 083701.

[19] Marino A M, Stroud C R. Phase-locked laser system for use in atomic coherence experiments [J]. Review of Scientific Instruments, 2008, 79(1): 013104.

[20] Appel J, MacRae A, Lvovsky A I. Versatile digital GHz phase lock for external cavity diode lasers [J]. Measurement Science and Technology, 2009, 20(5): 055302.

[21] Xu Z X, Zhang X, Huang K K, et al. A digital optical phase-locked loop for diode lasers based on field programmable gate array [J]. Review of Scientific Instruments, 2012, 83(9): 093104.

[22] Yim S H, Lee S B, Kwon T Y, et al. Optical phase locking of two extended-cavity diode lasers with ultra-low phase noise for atom interferometry [J]. Applied Physics B-Laser and Optics, 2014, 115(4): 491-495.

[23] Schmidt M, Prevedelli M, Giorgini A, et al. A portable laser system for high-precision atom interferometry experiments [J]. Applied Physics B-Laser and Optics, 2011, 102(1): 11-18.

[24] Wang P, Li R B, Yan H, et al. Demonstration of a Sagnac-type cold atom interferometer with stimulated Raman transitions [J]. Chinese Physics Letters, 2016, 24(1): 27-30.

[25] Wang K, Yao Z W, Li R B, et al. Hybrid wide-band, low-phase-noise scheme for Raman lasers in atom interferometry by integrating an acousto-optic modulator and a feedback loop [J]. Applied Optics, 2016, 55(5): 989-992.

[26] Shahriar M S, Turukhin A V, Liptay T, et al. Demonstration of injection locking a diode laser using a filtered electro-optic modulator sideband [J]. Optics Communications, 2000, 184(5): 457-462.

[27] Xue H B, Feng Y Y, Wang X J, et al. Generation of Raman laser beams based on a sideband injection locking technique using a fiber electro-optical modulator [J]. Review of Scientific Instruments, 2013, 84(4): 046104.

[28] Bouyer P, Gustavson T L, Haritos K G, et al. Microwave signal generation with optical injection locking [J]. Optics Letters, 1996, 21(18): 1502-1504.

[29] Chen W L, Qi X H, Yi L, et al. Optical phase locking with a large and tunable frequency difference based on a vertical-cavity surface-emitting laser [J]. Optics Letters, 2008, 33(4): 357-359.

[30] Li R B, Zhou L, Wang J, et al. Measurement of the quadratic Zeeman shift of 85Rb hyperfine sublevels using stimulated Raman transitions [J]. Optics Communications, 2009, 282(7): 1340-1344.

曹雷, 鲁思滨, 王锴, 姚战伟, 李润兵, 王谨, 詹明生. 基于锁相环路的拉曼激光制备及其相位噪声研究[J]. 量子电子学报, 2018, 35(4): 402. CAO Lei, LU Sibing, WANG Kai, YAO Zhanwei, LI Runbing, WANG Jin, ZHAN Mingsheng. Investigation of preparation and phase noise of Raman laser based on optical phase-locked loop[J]. Chinese Journal of Quantum Electronics, 2018, 35(4): 402.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!