激光生物学报, 2019, 28 (2): 97, 网络出版: 2019-08-13   

光动力治疗光源的研究新进展

Recent Advances in Light Sources for Photodynamic Therapy
作者单位
1 福建师范大学医学光电科学与技术教育部重点实验室, 福建省光子技术重点实验室, 福建 福州350007
2 中国人民解放军总医院激光医学科, 北京 100853
3 多伦多大学, 生物物理与成像研究部, 玛格丽特癌症研究所, 大学大道610, 多伦多M5G 2M9, 加拿大
摘要
光动力疗法(PDT)是一种联合利用治疗光源、光敏剂和氧分子, 选择性治疗恶性肿瘤和良性疾病的精准靶向疗法。光源作为PDT治疗的关键要素之一, 其发光波长、照光方式和剂量直接影响疗效。本文详细介绍了太阳光、近红外光、X射线、在体发光和发光二极管等5种PDT光源的研究新进展, 并分析了这五种治疗光源在生物组织穿透深度上的不同特性以及所存在的不足。随后, 重点讨论了以提高PDT治疗精度为目标的体表照光和体内照光等两种个性化照光模式。研发操作简便、价格低廉、性能优异的新型PDT光源是未来的发展方向。
Abstract
Photodynamic therapy (PDT)is a promising therapeutic modality that can selectively destroy oncological and non-oncological diseases with photosensitizer activated by specific wavelength light in the presence of oxygen. The efficiency of PDT depends strongly on the selection of irradiation light, including emission wavelength, irradiation mode and treatment dose. In this review, recent advances in the five kinds of PDT light sources, including daylight, near infrared light, X-ray, internal light and light emitting diode were introduced in detail. Meanwhile, the advantages and limitations of each light source are discussed. Furthermore, in order to achieve the personalized irradiation mode for improving the therapeutic effects and preciseness of clinical PDT, the surface and internal light irradiation were described. The developments of new PDT light sources with easier operation, lower price and greater performance are highlighted.
参考文献

[1] YUN S H, KWOK S J J. Light in diagnosis, therapy and surgery[J]. Nature Biomedical Engineering, 2017, 1(1): 0008.

[2] 李步洪, 谢树森. 功能型光敏剂的研究进展[J]. 中国激光医学杂志, 2007, 16(3): 179-185.

    LI Buhong, XIE Shusen. Functional photosensitizers for photodynamic therapy:recent developments[J]. Chinese Journal of Laser Medicine and Surgery, 2007, 16(3): 179-185.

[3] ZHANG H, LI Y H, CHEN Y, et al. Fluorescence and magnetic resonance dual-modality imaging-guided photothermal and photodynamic dual-therapy with magnetic porphyrin-metal organic framework nanocomposites[J]. Scientific Reports, 2017, 7: 44153.

[4] MEHRABAN N, FREEMAN H S. Developments in PDT sensitizers for increased selectivity and singlet oxygen production[J]. Materials, 2015, 8(7): 4421-4456.

[5] LI P X, MU J H, XIAO H L, et al. Antitumor effect of photodynamic therapy with a novel targeted photosensitizer on cervical carcinoma[J]. Oncology Reports, 2015, 33(1): 125-132.

[6] FAN W, HUANG P, CHEN X. Overcoming the achilles’ heel of photodynamic therapy[J]. Chemical Society Reviews, 2016, 45(23): 6488-6519.

[7] RAPOZZI V, DELLA PIETRA E, BONAVIDA B. Dual roles of nitric oxide in the regulation of tumor cell response and resistance to photodynamic therapy[J]. Redox Biology, 2015, 6: 311-317.

[8] LUCKY S S, SOO K C, ZHANG Y. Nanoparticles in photodynamic therapy[J]. Chemical Reviews, 2015, 115(4): 1990-2042.

[9] WIEGELL S R, WULF H C, SZEIMIES R M, et al. Daylight photodynamic therapy for actinic keratosis:an international consensus[J]. Journal of the European Academy of Dermatology and Venereology, 2012, 26(6): 673-679.

[10] SOTIRIOU E, EVAGELOU G, PAPADAVID E, et al. Conventional vs.daylight photodynamic therapy for patients with actinic keratosis on face and scalp:12-month follow-up results of a randomized, intraindividual comparative analysis[J]. Journal of the European Academy of Dermatology and Venereology, 2018, 32(4): 595-600.

[11] CORDEY H, VALENTINE R, LESAR A, et al. Daylight photodynamic therapy in Scotland[J]. Scottish Medical Journal, 2017, 62(2): 48-53.

[12] WIEGELL S R, FABRICIUS S, GNIADECKA M, et al. Daylight-mediated photodynamic therapy of moderate to thick actinic keratoses of the face and scalp:a randomized multicentre study[J]. British Journal of Dermatology, 2012, 166(6): 1327-1332.

[13] O’MAHONEY P, KHAZOVA M, HIGLETT M, et al. Use of illuminance as a guide to effective light delivery during daylight photodynamic therapy in the UK[J]. British Journal of Dermatology, 2017, 176(6): 1607-1616.

[14] MA Z, JI H, TAN D, et al. Porous YAG∶Nd3+ fibers with excitation and emission in the human “NIR optical window” as luminescent drug carriers[J]. Chemistry-A European Journal, 2012, 18(9): 2609-2616.

[15] WANG D, LIU B, QUAN Z, et al. New advances on the marrying of UCNPs and photothermal agents for imaging-guided diagnosis and the therapy of tumors[J]. Journal of Materials Chemistry B, 2017, 5(12): 2209-2230.

[16] VANKAYALA R, HUANG Y K, KALLURU P, et al. First demonstration of gold nanorods-mediated photodynamic therapeutic destruction of tumors via near infrared light activation[J]. Small, 2014, 10(8): 1612-1622.

[17] KIM T I, JEONG K H, MIN K S. Verrucous epidermal nevus (VEN)successfully treated with indocyanine green (ICG)photodynamic therapy (PDT)[J]. JAAD Case Reports, 2015, 1(5): 312-314.

[18] BOREHAM E M, JONES L, SWINBURNE A N, et al. A cyclometallated fluorenyl Ir (iii)complex as a potential sensitiser for two-photon excited photodynamic therapy (2PE-PDT)[J]. Dalton Transactions, 2015, 44(36): 16127-16135.

[19] KAROTKI A, KHURANA M, LEPOCK J R, et al. Simultaneous two-photon excitation of photofrin in relation to photodynamic therapy[J]. Photochemistry and Photobiology, 2006, 82(2): 443-452.

[20] SUN Z, ZHANG L P, WU F, et al. Photosensitizers for two-photon excited photodynamic therapy[J]. Advanced Functional Materials, 2017, 27(48): 1704079.

[21] COLLINS H A, KHURANA M, MORIYAMA E H, et al. Blood-vessel closure using photosensitizers engineered for two-photon excitation[J]. Nature Photonics, 2008, 2(7): 420-424.

[22] GUO L, GE J, LIU Q, et al. Versatile polymer nanoparticles as two-photon-triggered photosensitizers for simultaneous cellular, deep-tissue imaging, and photodynamic therapy[J]. Advanced Healthcare Materials, 2017, 6(12): 1601431.

[23] BLAZQUEZCASTRO A. Direct 1O2 optical excitation:a tool for redox biology[J]. Redox Biology, 2017, 13: 39-59.

[24] ANQUEZ F, ELYAZIDI-BELKOURA I, RANDOUX S, et al. Cancerous cell death from sensitizer free photoactivation of singlet oxygen[J]. Photochemistry and Photobiology, 2012, 88(1): 167-174.

[25] GENING T P, VORONOVA O S, DOLGOVA D R, et al. Analysis of the efficiency of using 1265-nm CW laser radiation for initiating oxidative stress in the tissue of a solid malignant tumour[J]. Quantum Electron, 2012, 42(9): 805-807.

[26] SOKOLOVSKI S G, ZOLOTOVSKAYA S A, GOLTSOV A, et al. Infrared laser pulse triggers increased singlet oxygen production in tumour cells[J]. Scientific Reports, 2013, 3: 3484.

[27] SAENKO Y V, GLUSHCHENKO E S, ZOLOTOVSKII L O, et al. Mitochondrial dependent oxidative stress in cell culture induced by laser radiation at 1265 nm[J]. Lasers in Medical Science, 2016, 31(3): 405-413.

[28] LI Z, ZHANG Y, HAN G. Lanthanide-doped upconversion nanoparticles for imaging-guided drug delivery and therapy[M]. Berlin Heidelberg : Springer Verlag, 2016: 139-164.

[29] CHEN G, SONG F, XIONG X, et al. Fluorescent nanosensors based on fluorescence resonance energy transfer[J]. Industrial & Engineering Chemistry Research, 2013, 52(33): 11228-11245.

[30] WANG C, TAO H, CHENG L, et al. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles[J]. Biomaterials, 2011, 32(26): 6145-6154.

[31] CUI S, YIN D, CHEN Y, et al. In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct[J]. American Chemical Society Nano, 2013, 7(1): 676-688.

[32] IDRIS N M, GNANASAMMANDHAN M K, ZHANG J, et al. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers[J]. Nature Medicine, 2012, 18(10): 1580-1585.

[33] PUNJABI A, WU X, TOKATLIAPOLLON A, et al. Amplifying the red-emission of upconverting nanoparticles for biocompatible clinically used prodrug-induced photodynamic therapy[J]. American Chemical Society Nano, 2014, 8(10): 10621-10630.

[34] WANG H, ZHU X, HAN R, et al. Near-infrared light activated photodynamic therapy of THP-1 macrophages based on core-shell structured upconversion nanoparticles[J]. Microporous and Mesoporous Materials, 2017, 239: 78-85.

[35] HU J, TANG Y A, ELMENOUFY A H, et al. Nanocomposite-based photodynamic therapy strategies for deep tumor treatment[J]. Small, 2015, 11(44): 5860-5887.

[36] WANG G D, NGUYEN H T, CHEN H, et al. X-ray induced photodynamic therapy:a combination of radiotherapy and photodynamic therapy[J]. Theranostics, 2016, 6(13): 2295-2305.

[37] CLEMENT S, DENG W, CAMILLERI E, et al. X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy:determination of singlet oxygen quantum yield[J]. Scientific Reports, 2016, 6: 19954.

[38] CHEN W, ZHANG J. Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment[J]. Journal of Nanoscience & Nanotechnology, 2006, 6(4): 1159-1166.

[39] COLLINS J E, KUMAR A, WAYNANT R W, et al. Novel applications of diagnostic X-rays in activating photo-agents through X-ray induced visible luminescence from rare-earth particles:an in vitro study[J]. Proceedings of SPIE, 2010, 7565: 75650B.

[40] MA L, ZOU X J, CHEN W. A new X-ray activated nanoparticle photosensitizer for cancer treatment[J]. Journal of Biomedical Nanotechnology, 2014, 10(8): 1501-1508.

[41] TANG Y, HU J, ELMENOUFY A H, et al. Highly efficient fret system capable of deep photodynamic therapy established on X-ray excited mesoporous LaF3∶Tb scintillating nanoparticles[J]. American Chemical Society Applied Materials & Interfaces, 2016, 7(22): 12261-12269.

[42] YANG C C, SUN Y J, CHUNG P H, et al. Development of Ce-doped TiO2 activated by X-ray irradiation for alternative cancer treatment[J]. Ceramics International, 2017, 43(15): 12675-12683.

[43] MAGALHAES M C, ESTEVES DA SILVA J C G, DA SILVA L P. Chemiluminescence and bioluminescence as an excitation source in the photodynamic therapy of cancer:a critical review[J]. Chemphyschem, 2016, 17(15): 2286-2294.

[44] SO M K, LOENING A M, GAMBHIR S S, et al. Creating self-illuminating quantum dot conjugates[J]. Nature Protocols, 2006, 1(3): 1160-1164.

[45] HSU C Y, CHEN C W, YU H P, et al. Bioluminescence resonance energy transfer using luciferase-immobilized quantum dots for self-illuminated photodynamic therapy[J]. Biomaterials, 2013, 34(4): 1204-1212.

[46] KIM S, JO H C, JEON M, et al. Luciferase-rose bengal conjugates for singlet oxygen generation by bioluminescence resonance energy transfer[J]. Chemical Communications, 2017, 53(33): 4569-4572.

[47] LAPTEV R, NISNEVITCH M, SIBONI G, et al. Intracellular chemiluminescence activates targeted photodynamic destruction of leukaemic cells[J]. British Journal of Cancer, 2006, 95(2): 189-196.

[48] ZHANG Y, PANG L, MA C, et al. Small molecule-initiated light-activated semiconducting polymer dots:an integrated nanoplatform for targeted photodynamic therapy and imaging of cancer cells[J]. Analytical Chemistry, 2014, 86(6): 3092-3099.

[49] SINGH S V B, KIM J, PARK H, et al. Novel chemi-dynamic nanoparticles as a light-free photodynamic therapeutic system for cancer treatment[J]. Macromolecular Research, 2017, 25(7): 749-755.

[50] SPINELLI A E, BOSCHI F. Novel biomedical applications of cerenkov radiation and radioluminescence imaging[J]. Physica Medica-European Journal of Medical Physics, 2015, 31(2): 120-129.

[51] RAN C, ZHANG Z, HOOKER J, et al. In vivo photoactivation without “light”:use of cherenkov radiation to overcome the penetration limit of light[J]. Molecular Imaging & Biology, 2012, 14(2): 156-162.

[52] KOTAGIRI N, AKERS W J, ACHILEFU S, et al. Breaking the depth dependency of phototherapy with cerenkov radiation and low radiance responsive nanophotosensitizers[J]. Nature Nanotechnology, 2015, 10(4): 370-379.

[53] HARTL B A, HIRSCHBERG H, MARCU L, et al. Activating photodynamic therapy in vitro with cerenkov radiation generated from yttrium-90[J]. Journal of Environmental Pathology Toxicology and Oncology, 2016, 35(2): 185-192.

[54] KAMKAEW A, CHENG L, GOEL S, et al. Cerenkov radiation induced photodynamic therapy using chlorin e6-loaded hollow mesoporous silica nanoparticles[J]. Applied Materials & Interfaces, 2016, 8(40): 26630-26637.

[55] ERKIERTPOLGUJ A, HALBINA A, POLAKPACHOLCZYK I, et al. Light emitting diodes in photodynamic therapy in non-melanoma skin cancers - own observations and literature review[J]. Journal of Cosmetic & Laser Therapy, 2016, 18(2): 105-110.

[56] MOSELEY H, ALLEN J W, IBBOTSON S, et al. Ambulatory photodynamic therapy:a new concept in delivering photodynamic therapy[J]. British Journal of Dermatology, 2006, 154(4): 747-750.

[57] CHEN D F, ZHENG H F, HUANG Z Y, et al. Light-emitting diode-based illumination system for in vitro photodynamic therapy[J]. International Journal of Photoenergy, 2012, 2012: 920671.

[58] COCHRANE C, MORDON S R, LESAGE J C, et al. New design of textile light diffusers for photodynamic therapy[J]. Materials Science and Engineering C-Materials for Biological Applications, 2013, 33(3): 1170-1175.

[59] ATTILI S K, LESAR A, MCNEILL A, et al. An open pilot study of ambulatory photodynamic therapy using a wearable low-irradiance organic light-emitting diode light source in the treatment of nonmelanoma skin cancer[J]. British Journal of Dermatology, 2009, 161(1): 170-173.

[60] GRIFFIN L L, LEAR J T. Photodynamic therapy and non-melanoma skin cancer[J]. Cancers, 2016, 8(10): 170-173.

[61] MORDON S, COCHRANE C, TYLCZ J B, et al. Light emitting fabric technologies for photodynamic therapy[J]. Photodiagnosis and Photodynamic Therapy, 2015, 12(1): 1-8.

[62] KONCAR V. Optical fiber fabric displays[J]. Optics and Photonics News, 2005, 16(4): 40-44.

[63] SELM B, ROTHMAIER B, CAMENZIND M, et al. Novel flexible light diffuser and irradiation properties for photodynamic therapy[J]. Journal of Biomedical Optics, 2007, 12(3): 034024.

[64] HU Y, WANG K, ZHU T C. Pre-clinic study of uniformity of light blanket for intraoperative photodynamic therapy[J]. Proceedings of SPIE, 2010, 7551: 755112.

[65] HU X M, ZHANG F J, DONG F, et al. Three-dimensional illumination procedure for photodynamic therapy of dermatology[J]. Journal of Biomedical Optics, 2014, 19(9): 098003.

[66] ZHANG F J, HU X M, ZHOU Y, et al. Optimization of irradiance for photodynamic therapy of port-wine stain[J]. Journal of Biomedical Optics, 2015, 20(4): 048004.

[67] SHAFIRSTEIN G, BELLNIER D, OAKLEY E, et al. Interstitial photodynamic therapy-a focused review[J]. Cancers, 2017, 9(2): E12.

[68] JERJES W, UPILE T, HAMDOON Z, et al. Photodynamic therapy:the minimally invasive surgical intervention for advanced and/or recurrent tongue base carcinoma[J]. Lasers in Surgery & Medicine, 2011, 43(4): 283-292.

[69] KARAKULLUKCU B, NYST H J, VAN VEEN R L, et al. mTHPC mediated interstitial photodynamic therapy of recurrent nonmetastatic base of tongue cancers:development of a new method[J]. Head & Neck, 2012, 34(11): 1597-1606.

[70] JOHANSSON A, FABER F, KNIEBUEHLER G, et al. Protoporphyrin IX fluorescence and photobleaching during interstitial photodynamic therapy of malignant gliomas for early treatment prognosis[J]. Lasers in Surgery & Medicine, 2013, 45(4): 225-234.

[71] CANAVESI C, CASSARLY W J, FOSTER T H, et al. Lightpipe device for delivery of uniform illumination for photodynamic therapy of the oral cavity[J]. Applied Optics, 2011, 50(16): 2322-2325.

[72] MIYAZAKI K, MORIMOTO Y, NISHIYAMA N, et al. A novel homogeneous irradiation fiber probe for whole bladder wall photodynamic therapy[J]. Lasers in Surgery and Medicine, 2012, 44(5): 413-420.

[73] ZHU T C, KIM M M, ONG Y H, et al. A summary of light dose distribution using an IR navigation system for photofrin-mediated pleural PDT[J]. Proceedings of SPIE, 2017, 10047: 1004709.

梁富强, 沈毅, 顾瑛, 布瑞恩·坎贝尔·威尔逊, 李步洪. 光动力治疗光源的研究新进展[J]. 激光生物学报, 2019, 28(2): 97. LIANG Fuqiang, SHEN Yi, GU Ying, WILSON Campbell Brian, LI Buhong. Recent Advances in Light Sources for Photodynamic Therapy[J]. Acta Laser Biology Sinica, 2019, 28(2): 97.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!