光学与光电技术, 2023, 21 (4): 48, 网络出版: 2024-01-17  

用于离焦图像焦点预测中的深度学习不确定性建模

Uncertainty Modeling in Deep Learning for Focus Prediction of Defocused Images
作者单位
东华大学理学院,上海 201620
摘要
自动数字显微镜的关键技术之一就是自动对焦,为了提升对焦的速度,越来越多的深度学习方法被引入用于单帧图像的焦点预测。然而几乎所有的网络模型都过分信任其输出的结果,面对未知的样本即使输出错误的结果也不会给出任何警示。利用贝叶斯卷积神经网络的实现,可从单张图像中完成离焦距离的预测,并获得焦点预测结果的不确定性估计,此外提出通过设置不确定度阈值实现对焦点预测结果的筛选。在一个大型开源数据集上进行了测试,利用不确定性估计评估预测结果的有效性。结果表明,对比同类型样本,所提出的网络模型在未知样本上能够输出更高的不确定度,建立的筛选机制能有效减小模型在未知样本上的预测误差。在公共数据集上的两个样品的最终误差范围为 0.37±0.46 μm和 0.83±1.17μm,优于筛选前的 0.40±0.66μm和 1.08±1.78μm。
Abstract
One of the key technologies in automatic digital microscopy is autofocus. In order to improve the speed of focusing,more and more deep learning methods are being introduced for focus prediction of single-frame images. However,almost all networks believe that their output is necessarily correct,even in the face of unknown samples when the output error results will not include any warning. In this paper,a Bayesian convolutional neural network is proposed to predict the defocus distance from a single image and obtain the uncertainty estimation of the focus prediction results. In addition,uncertainty is proposed to measure the validity of the results,and the focus prediction results are filtered by setting the uncertainty threshold. The proposed method is tested on a large open-source dataset. Experimental results show that the network model proposed in this paper can output higher uncertainty for unknown samples,and the established screening mechanism can effectively reduce the prediction error of the model for unknown samples by eliminating some error results. The model achieved a final error range of 0.37 ± 0.46 μm and 0.83 ± 1.17 μm on two samples on the public data set,which is better than 0.40 ± 0.66 μm and 1.08 ± 1.78 μm before screening.
参考文献

[1] Fainardi E,Castellazzi M,Seraceni S,et al. Under the microscope:Focus on chlamydia pneumoniae infection and multiple sclerosis[J]. Current Neurovascular Research,2008,5(1):60-70.

[2] Groen F C,Young I T,Ligthart G. A comparison of different focus functions for use in autofocus algorithms[J].Cytometry:The Journal of the International Society for Analytical Cytology,1985,6(2):81-91.

[3] Subbarao M,Choi T-S,Nikzad A. Focusing techniques[J]. Optical Engineering,1993,32(11):2824-36.

[4] Yoshida Y,Shinohara S,Ikeda H,et al. Application of semiconductor laser range finder to position control of lens in auto-focus camera[C]//Conference of the IEEE Industrial Electronics Society. IEEE,1991.

[5] CHAN C-C,HUANG S-K,CHEN H H. Enhancement of phase detection for autofocus[C]//IEEE International Conference on Image Processing(ICIP). F IEEE,2018.

[6] ?LIWI?SKI P,WACHEL P. A simple model for on-sensor phase-detection autofocusing algorithm[J]. Journal of Computer and Communications,2013,1(6):11.

[7] PECH-PACHECO J L,CRISTóBAL G,CHAMORRO-MARTINEZ J,et al. Diatom autofocusing in brightfield microscopy:A comparative study[C]//15th International Conference on Pattern Recognition ICPR-2000. IEEE,2000.

[8] ZHANG Z,LIU Y,XIONG Z,et al. Focus and blurriness measure using reorganized dct coefficients for an autofocus application[J]. IEEE Transactions on Circuits and Systems for Video Technology,2016,28(1):15-30.

[9] SHEN F,HODGSON L,HAHN K. Digital autofocus methods for automated microscopy[J]. Methods in Enzymology,2006,414:620-632.

[10] KUDRYAVTSEV A V,DEMBéLé S,PIAT N. Autofocus on moving object in scanning electron microscope[J].Ultramicroscopy,2017,182:216-225.

[11] JIN S H,CHO J U,JEON J W. FPGA based passive auto focus system using adaptive thresholding[C]//2006 SICEICASE International Joint Conference. IEEE,2006.

[12] YAZDANFAR S,KENNY K B,TASIMI K,et al. Simple and robust image-based autofocusing for digital microscopy[J]. Optics Express,2008,16(12):8670-8676.

[13] LIAO J,JIANG Y,BIAN Z,et al. Rapid focus map surveying for whole slide imaging with continuous sample motion[J]. Optics Letters,2017,42(17):3379-3382.

[14] Krizhevsky A,Sutskever I,Hinton G E. Imagenet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90.

[15] 徐昭,周昕,白星,等. 基于深度学习的混沌加密灰度图像重建方法[J]. 光学与光电技术,2021,19(3):75-81.XU Zhao,ZHOU Xin,BAI Xing,et al. Reconstruction of chaotic grayscale image encryption based on deep learning[J]. Optics & Optoelectronic Technology,2021,19(3):75-81.

[16] CHO K,VAN MERRI?NBOER B,GULCEHRE C,et al. Learning phrase representations using RNN encoderdecoder for statistical machine translation[J]. arXiv preprint arXiv:14061078,2014,

[17] REN Z,XU Z,LAM E Y. Learning-based nonparametric autofocusing for digital holography[J]. Optica,2018,5(4):337-44.

[18] WEI L,ROBERTS E. Neural network control of focal position during time-lapse microscopy of cells[J]. Scientific Reports,2018,8(1):1-10.

[19] PINKARD H,PHILLIPS Z,BABAKHANI A,et al. Deep learning for single-shot autofocus microscopy[J].Optica,2019,6(6):794-801.

[20] WU Y,RIVENSON Y,ZHANG Y,et al. Extended depth-of-field in holographic imaging using deep-learningbased autofocusing and phase recovery[J]. Optica,2018,5(6):704-713.

[21] LIAO J,CHEN X,DING G,et al. Deep learning-based single-shot autofocus method for digital microscopy[J].Biomedical Optics Express,2022,13(1):314-327.

[22] GAL Y,GHAHRAMANI Z. Dropout as a bayesian approximation:Representing model uncertainty in deep learning[C]//international Conference on Machine Learning. PMLR,2016.

[23] TAN M,LE Q. Efficientnet:Rethinking model scaling for convolutional neural networks[C]//International Conference on Machine Learning. PMLR,2019.

[24] Paisley J,Blei D,Jordan M. Variational Bayesian inference with stochastic search[J]. arXiv preprint arXiv:1206.6430,2012.

[25] Rezende D J,Mohamed S,Wierstra D. Stochastic backpropagation and approximate inference in deep generative models[C]//International Conference on Machine Learning. PMLR,2014.

[26] Denker J,Lecun Y. Transforming neural-net output levels to probability distributions[C]//Proceedings of the 1990 Conference on Advance in Neural Information Processing System 3. Denver,Colorad,USA,1990:853-859.

[27] Srivastava N,Hinton G,Krizhevsky A,et al. Dropout:A simple way to prevent neural networks from overfitting [J]. The Journal of Machine Learning Research,2014,15(1):1929-58.

[28] Abdar M,Pourpanah F,Hussain S,et al. A review of uncertainty quantification in deep learning:Techniques,applications and challenges[J]. Information Fusion,2021,76:243-297.

[29] JIANG S,LIAO J,BIAN Z,et al. Transform-and multi-domain deep learning for single-frame rapid autofocusing in whole slide imaging[J]. Biomedical Optics Express,2018,9(4):1601-1612.

朱景峰, 钟平, 汤信, 张博, 陈宇. 用于离焦图像焦点预测中的深度学习不确定性建模[J]. 光学与光电技术, 2023, 21(4): 48. 朱景峰, 钟平, 汤信, 张博, 陈宇. Uncertainty Modeling in Deep Learning for Focus Prediction of Defocused Images[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2023, 21(4): 48.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!