光学与光电技术, 2023, 21 (6): 0117, 网络出版: 2024-02-29  

用于冷原子干涉系统的精密磁场控制技术研究

Precision Magnetic Field Control Technology Applied in Cold Atom System
作者单位
1 解放军某部, 湖北 武汉 430000
2 中国科学院大学, 北京 100049
3 华中光电技术研究所- 武汉光电国家研究中心, 湖北 武汉 430223
摘要
在各种冷原子干涉测量系统中, 磁光阱(Magneto Optical Trap, MOT)、补偿及偏置磁场控制是不可或缺的关键技术, 稳定、快速的磁场控制直接影响着原子冷却囚禁、干涉等过程中原子团的精密操控。设计了一套高性能的精密磁场控制系统, 电路结构上通过采用精密放大器驱动的低噪声恒流源拓扑, 以降低磁场驱动电流的噪声水平; 控制方式上采用模拟PID+扰动抑制的控制策略, 以提高磁场驱动电流的开关速度。实验室环境下测试结果表明: 当磁场驱动电流输出为1 A的情况下, 电流开启时间优于300 μs, 关断时间优于50 μs, DC(0 Hz)~250 kHz频率范围内总体电流噪声优于-80 dB。最终, 通过在冷原子绝对重力仪/重力梯度仪与冷原子陀螺系统中的应用测试, 所设计的磁场控制模块满足了冷原子干涉系统控制需求, 达到了预期效果。而且通过自主研制, 解决了对商用磁场控制模块的依赖, 促进了量子测量装置的装备化。
Abstract
In various cold atomic interferometry systems, MOT, compensation and bias magnetic control are indispensable techniques. The precise manipulation of atomic groups is directly affected by table and fast magnetic field control in the process of atomic cooling, trapping and interference. A set of high-performance precision magnetic field control system is designed in this paper. In circuit topology, the low-noise constant current source based on precision amplifier is used to reduce the noise level of magnetic field driven current. In control mode, analog PID plus disturbance suppression control strategy is adopted to improve the switching speed of magnetic field driven current. The experimental tests are implemented in the laboratory environment. In case of 1 A magnetic field driven current, the opening time is shorter than 300 μs, while the shutdown time is less than 50 μs. Meanwhile, overall current noises are superior to -80 dB at the frequency ranges of DC(0 Hz)~250 kHz. Finally, through experimental tests in cold atom absolute gravimeter/gravity gradiometer and gyroscope, the designed magnetic field control system could meet control requirements of cold atomic interferometry systems and achieve the expected affect. Moreover, its independent development could solve the dependence on commercial magnetic-field control modules, and promote the equipment of quantum measurement devices.
参考文献

[1] Cui J, Xu Y, Chen L, et al. Time base evaluation for atom gravimeters[J]. Rev. Sci. Instrum., 2018, 89: 083104.

[2] Kai Bongs, Michael Holynsi, Jamie Vovrosh. Taking atom interferometric quantum sensors from the laboratory to real-world applications[J]. Nature Reviews physics, 2019, 12(1): 731-739.

[3] Gustavson T L, Bouyer P, Kasevich M A. Precision rotation measurements with an atom interferometer gyroscope. Phys. Rev. Lett., 1997, 78(11): 2046-2049.

[4] Wu Bin, Zhu Dong, Cheng Bing, et al. Dependence of the sensitivity on the orientation for a free-fall atom gravimeter[J]. Optics Exoress, 2019, 27(8): 11252-11263.

[5] Bidel Y, Zahzam N, Blanchard C, et al. Absolute marine gravimetry with matter-wave interferometry[J]. Nature Communications, 2018, 9: 627.

[6] Durfee D S, Shaham Y K, Kasevich M A. Long-term stability of an area-reversible atom-interferometer sagnac gyroscope. Phys. Rev. Lett, 2006, 97(24): 240801.

[7] Pawlowski B. Gravity gradiometry in resource exploration[J]. Leading Edge, 1998, 17(1): 51-52.

[8] 李明泽, 褚鹏蛟, 张超. 冷原子干涉陀螺仪技术专利分析研究[J]. 导航与控制, 2017, 16(6): 109-115. LI Ming-ze, CHU Peng-jiao, ZHANG Chao. Patent analysis of cold atom interference gyroscope technology[J]. Navigation and Control, 2017, 16(6): 109-115.

[9] 周敏康. 原子干涉重力测量原理性实验研究[D]. 武汉: 华中科技大学, 2011. ZHOU Min-kang. Experimental demonstration of an atom interferometry gravimeter[D]. Wuhan: Huazhong University of Science and Technology, 2011.

[10] 吴彬, 周寅, 程冰, 等. 基于原子重力仪的车载静态绝对重力测量[J]. 物理学报, 2020, 69(6): 060302-1~8. WU Bin, ZHOU Yin, CHENG Bing, et al. Static measurement of absolute gravity in truck based atomic gravimeter[J]. ACta Phys. Sin., 2020, 69(6): 060302-1~8.

[11] 胡平华, 赵明, 黄鹤, 等. 航空/海洋重力测量仪器发展综述[J]. 导航定位与授时, 2017, 4(4): 10-19. HU Ping-hua, ZHAO Ming, HUANG He, et al. Review on the development of airborne/marine gravimetry instruments[J]. Navigation Positioning and Timing, 2017, 4(4): 10-19.

[12] 周超, 马思迁, 刘继勋, 等. 原子干涉高均匀偏置磁场设计[J]. 光学与光电技术, 2020, 18(1): 52-56. ZHOU Chao, MA Si-qian, LIU Ji-xun, et al. High precision Zernike fitting method in optomechanical analysis[J]. Optics and Optoelectronic Technology, 2020, 18(1): 52-56.

[13] Dunning A, Gregory R, Bateman J, et al. Composite pulse for interferometry in a thermal cold atom cloud[J]. Phys. Rev. Lett. 2014, 90: 033608.

[14] Hansch T W, Schawlow A L. Cooling of gases by laser radiation[J]. Optics Communications, 1975, 13(1): 68-69.

[15] Chu S, Hollberg L, Bjorkholm J E, et al. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure[J]. Phys. Rev. Lett., 1985, 55(1): 48.

黄国鹏, 王斌, 陈新文, 郭劼. 用于冷原子干涉系统的精密磁场控制技术研究[J]. 光学与光电技术, 2023, 21(6): 0117. HUANG Guo-peng, WANG Bin, CHEN Xin-wen, GUO Jie. Precision Magnetic Field Control Technology Applied in Cold Atom System[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2023, 21(6): 0117.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!