光谱学与光谱分析, 2014, 34 (2): 415, 网络出版: 2015-01-13   

紫金山金铜矿明矾石的拉曼光谱特征

Raman Spectra Characteristics of Alunite in the Zijinshan Gold-Copper Deposit
王翠芝 1,2,*熊欣 3
作者单位
1 福州大学紫金矿业学院, 福建 福州350108
2 福建省矿产资源重点实验室, 福建 福州350108
3 中国地质科学院矿产资源研究所, 北京100037
摘要
紫金山金铜矿是我国大陆首例高硫化型浅成低温热液型矿床。 矿床上金下铜, 金矿主要赋存在潜水面以上, 与强硅化有关; 铜矿主要赋存于潜水面之下, 与明矾石化有关。 明矾石有四种产出状态, 分别为蚀变岩型、 与铜硫化物共生型、 后期脉状、 粉末状。 不同产出状态的明矾石具有不同的拉曼光谱特征和荧光散射背景。 明矾石流体包裹体激光拉曼谱图显示: (1)从蚀变岩型、 与铜硫矿化物共生型到后期脉状明矾石均具有明矾石特征性的谱带, 只是受荧光散射影响逐渐减弱; 粉末状明矾石具有与前三者不同的谱带特性, 各谱带强度均较弱, 荧光散射较强烈。 (2)100~700 cm-1区间谱带可作为明矾石分子结构中阳离子类质同象置换的“指纹谱带”。 蚀变岩型明矾石, 161和234 cm-1峰变化明显, 具有较广泛的Na对K的类质同象置换; 与铜硫化物共生的明矾石, 381和484 cm-1峰变化明显, 指示Cu和Ga等阳离子对Al离子的类质同象置换; 后期脉状明矾石, 161, 234, 484, 508 cm-1峰值均比较稳定, Na对K和Si对Al的类质同象置换较少; 潜水面附近的粉末状明矾石因荧光散射强烈, 各个谱带强度均较弱。 (3)明矾石的激光拉曼光谱和红外光谱配合使用, 可为明矾石矿物研究提供完整的分子振动光谱特征, 为明矾石的成因提供结构信息。 在岩相学、 矿相学、 矿床地质、 矿床地球化学、 区域地质特征研究的基础上, 通过明矾石的激光拉曼光谱(结合荧光散射背景)可进一步为紫金山金铜矿这个典型的高硫化型浅成低温热液矿床的形成机制提供演化进程信息。
Abstract
The Zijinshan gold-copper deposit is the first one of high sulfidation epithermal hydrothermal deposits. The gold bodies up, and the copper bodies down. The gold bodies mainly occur above the ground water table associated with strong silicification, and the copper bodies mainly occur below the ground water table associated with alunitization. The alunite of the Zijinshan gold-copper deposit has four types of occurrence status, that is the altered rock type, the intergrowth-with-Cu-sulphide type, the vein type and the powder type. Different types of the alunite are of different Raman spectra characteristics and fluorescence scattering background. Laser Raman spectra of inclusions in the alunite show that: (1) The characteristics of the Laser Raman spectra of the alunite are of characteristic spectral bands of alunite, just fluorescent scattering weaken gradually from the altered rock type, the intergrowth-with-Cu-sulphide type to the vein type; the alunite in the Powder type has different bands of the Laser Raman spectra relative to the former three types, the intensity of each band is weaker, and it’s fluorescent scattering intensity is strongger. (2) The bands in 100~700 cm-1 of the Laser Raman spectra can be used as "fingerprint" bands indicating the condition of the cation replacement in the molecular structure of alunite. The intensities at 161 and 234 peak change obviously in the bands of the alunite in the altered rock type, which indicating a wide replacement between K and Na; the intensities at 381 and 484 peak in the bands of the alunite in the intergrowth-with-Cu-sulphide type change significantly, indicating Al can be replaced with Cu, Ga, etc.; the larger and stable intensities of the alunite in the vein type in the bands at the peaks about 161, 234, 484, 508, etc. indicate that there are less chances with the replacement between K and Na, Al and Si; fluorescence scatorescent scattering is very strong and the intensity of each band is weaker in the bands of the alunite in the powder type, which indicate that the alunite formed in the underground water condition. (3) The laser Raman spectra of the alunite can be used together with it’s infrared spectra, and provide the characteristics of complete vibration spectra of the alunite and the structure information with the mineral research. Based on the mineralography, the petrography, the ore deposit geology, the geochemistry of mineral deposits, the regional geological features, the Laser Raman spectra of the alunite (Combined with fluorescence scattering background) can further the evolution process for the Zijinshan gold-copper deposit as a typical high sulfidation epithermal hydrothermal deposit.
参考文献

[1] ZHANG De-quan, LI Da-xin, ZHAO Yi-ming, et al(张德全, 李大新, 赵一鸣, 等). Geological Review(地质论评), 1991, 37(6): 481.

[2] ZHANG De-quan, FENG Cheng-you, LI Da-xin, et al(张德全, 丰成友, 李大新, 等). Acta Geoscientica Sinica(地球学报), 2005, 26(2): 127.

[3] HUANG Ren-sheng(黄仁生). Journal of Geomechanics(地质力学学报), 2008, 14(1): 74.

[4] QIU Xiao-ping, LAN Yue-zhang, LIU Yu(邱小平, 蓝岳彰, 刘羽). Acta Geoscientica Sinica (地球学报), 2010, 31(4): 209.

[5] ZHONG Jun, CHEN Yan-jing, CHEN Jing, et al(钟军, 陈衍景, 陈静, 等). Acta Petrologica Sinia (岩石学报), 2011, 27(5): 1410.

[6] CHEN Jing, CHEN Yan-jing, ZHONG Jun, et al(陈静, 陈衍景, 钟军, 等). Acta Petrologica Sinia (岩石学报), 2011, 27(5): 1425.

[7] LIAO Li-bing, WANG Li-juan, YIN Jing-wu, et al(廖立兵, 王丽娟, 尹京武, 等). Mineral Material-Modern Testing Technology(矿物学材料—现代测试技术). Beijing: Chemical Industry Press(北京: 化学工业出版社), 2012. 125.

[8] ZHU Ming-hua, HU Ping(朱明华, 胡平). Instrumental Analysis(仪器分析). Beijing: Higher Education Press(北京: 高等教育出版社), 2008. 325.

[9] WANG Cui-zhi, ZHANG Wen-yuan(王翠芝, 张文媛). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2013, 33(7): 1969.

[10] WANG Cui-zhi, QUE Hong-hua(王翠芝, 阙洪华). Acta Mineralogica Sinica(矿物学报), 2013, 33(3): 521.

[11] WU Yan-shuang, WANG Li-jin, ZHOU Ke-fa, et al(吴艳爽, 汪立今, 周可法, 等). Rock and Mineral Analysis(岩矿测试), 2012, 31(3): 507.

[12] Maubec N, Lahfid A, Lerouge C, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, 96: 925.

[13] WANG Cui-zhi, QI Jin-ping, LAN Rong-gui(王翠芝, 祁进平, 兰荣贵). China Mining Magazine(中国矿业), 2013, 22(3): 76.

[14] Charles G C, Robert O R, Barnaby W R, et al. Chemical Geology, 2005, 215:317.

[15] Deyell C L, Dipple G M. Chemical Geology, 2005, 215: 219.

[16] WANG Fu-sheng, LAN Xiang, LIANG Xiang-qi(王福生, 兰翔, 梁祥济). Zhejiang Geology(浙江地质), 1997, 13(1): 55.

[17] TANG Min-hui, ZHOU Tao-fa, FAN Yu, et al(唐敏惠, 周涛发, 范裕, 等). Jouranl of Hefei University of Technology (合肥工业大学·自然科学版), 2011, 34(9): 1402.

王翠芝, 熊欣. 紫金山金铜矿明矾石的拉曼光谱特征[J]. 光谱学与光谱分析, 2014, 34(2): 415. WANG Cui-zhi, XIONG Xin. Raman Spectra Characteristics of Alunite in the Zijinshan Gold-Copper Deposit[J]. Spectroscopy and Spectral Analysis, 2014, 34(2): 415.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!