中国激光, 2023, 50 (5): 0504004, 网络出版: 2023-02-23  

非偏振分光棱镜的偏振敏感度测量 下载: 505次

Polarization Sensitivity Measurement Method for Non-Polarizing Beam Splitters
孟晨 1,2高珊 1,2姚晓天 1,2崔省伟 1,2,**郝鹏 1,2,*
作者单位
1 河北大学物理科学与技术学院光信息技术创新中心,河北 保定 071002
2 河北省光学感知技术创新中心,河北 保定 071002
摘要
非偏振分光棱镜(NPBS)的偏振相关性会对外差干涉仪、偏振干涉仪和激光干涉仪等干涉系统的非线性误差、偏振误差和测量精度等带来不可忽视的影响。首先对NPBS偏振敏感度的4个特征参数的测量原理进行介绍,接着基于NPBS偏振敏感度测量系统进行一系列实验并对实验结果进行分析。NPBS的s光与p光分量的透射比和反射比基于圆偏振光入射并同步测量透/反射光中s、p偏振方向的强度来实现,以抑制光源抖动及光电探测器响应不一致性对测量结果的影响。在相位偏振敏感度测量方面,基于偏振测量系统对透/反射光的斯托克斯分量S2S3进行测量,获得NPBS的s光与p光的透/反射相位差。3个NPBS样品的重复性测试实验结果表明:上述非偏振分光棱镜的偏振敏感度测量方法对NPBS透射比和反射比的测量精度(最大偏差与测量平均值之比)为-0.08%~+0.08%,重复性优于0.1%,对NPBS透射相位差和反射相位差的测量精度为-0.84%~+0.84%,测量重复性优于1%。对NPBS样品在不同入射波长和入射角度下的偏振敏感度进行了测量,结果显示:在1540~1560 nm范围内,被测NPBS样品的透/反射比变化小于0.02,s光与p光的透/反射相位差随着波长增加而减小;随着入射角度从-5°增大到+5°,s光与p光之间的透/反射相位差减小。NPBS反射相位差的变化大于透射相位差的变化,对波长和入射角度的变化更敏感。
Abstract
Objective

A non-polarizing beam splitter (NPBS) is commonly used in interferometer systems. Ideally, the NPBS can ensure consistency between the polarization state of the outgoing light and that of the incident light. However, because of defects in the actual process, the birefringence effect of NPBS has a non-negligible impact on the nonlinear error, polarization error, and measurement accuracy of the interference system. Therefore, it is necessary to measure the polarization sensitivity of an NPBS to compensate for the birefringence error. At present, the general system structure used to measure polarization sensitivity is relatively complex, and some methods require a combination of spectrometers or modulators and additional circuitry for measurement, which is cumbersome with respect to data processing and inconvenient to operate. In this paper, we propose a different method to measure the polarization sensitivity of NPBS, which has the advantages of fast measurement speed, simple system structure, efficient data processing, high repeatability, and can eliminate the influence of light source jitter, optical path system error, and PD responsivity inconsistency. This method is significant for evaluating the NPBS error to provide high-quality NPBSs for use in interferometer systems.

Methods

NPBS polarization sensitivity measurements include transmittance/reflectance measurement and transmission/reflection phase difference measurement. First, the measurement principles of the four characteristic parameters affecting the polarization sensitivity of NPBS are introduced. Regarding transmittance/reflectance measurements, circularly polarized light is incident to the NPBS, and the intensities of the s- and p-polarization directions in the transmitted/reflected light are measured synchronously. The voltage values corresponding to the light intensity of s light and p light are obtained by photodetector. The measurement results are then normalized to suppress the influence of light source jitter, optical path system error, and PD response inconsistency on the measurement results. Regarding the phase polarization sensitivity measurement, we use a polarization measurement system (PSGA) to measure the S2 and S3 Stokes components of the transmitted/reflected light. Using the Stokes parameter method to calculate the phase difference can eliminate the effect of light intensity jitter. The relative values of the transmission/reflection phase difference of the s light and p light of the NPBS are then obtained by the difference method to eliminate the influence of the optical path system error.

Results and Discussions

The accuracy of the proposed NPBS polarization sensitivity measurement method was verified experimentally. In terms of the verification of the transmittance/reflectance polarization sensitivity measurement system, the blank transmittance in air without NPBS was measured, and the transmittance after normalization correction was 1.0001, indicating that the transmittance/reflectance polarization sensitivity measurement of the system has good accuracy (error of 0.01%). This is an improvement compared to the result before normalization correction (3.32%) and clearly demonstrates the error correction effect obtained by normalization correction (Fig. 4). To verify the transmission/reflection phase difference polarization sensitivity measurement system, the measurement system was used to measure the phase retardation of the quarter-wave plate, and the measurement result deviated by 0.09° from the theoretical value of 90°, indicating the high measurement accuracy of the measurement system (Fig. 4). The polarization sensitivities of three customized NPBS samples were measured ten times repeatedly using the proposed measurement method. The measurement accuracy of the NPBS transmittance/reflectance is -0.08%-+0.08%, and the repeatability is better than 0.1%. The measurement accuracy of the NPBS transmission/reflection phase difference is -0.84%-+0.84%, and the repeatability is better than 1% (Fig. 5). These results demonstrate that the proposed measurement method has the advantages of good measurement stability and high measurement accuracy. Furthermore, the polarization sensitivities of the NPBS samples were measured at different incident wavelengths and incident angles. Within the range of 1540 nm-1560 nm, the change in the transmittance/reflectance was less than 0.02, and the transmission/reflection phase difference between s light and p light decreased with increasing wavelength (Fig. 6). When the incident yaw angle changes from -5° to +5°, the phase difference between s light and p light decreases (Fig. 7). The change in the NPBS reflection phase difference is larger than that in the NPBS transmission phase difference, indicating that the former is more sensitive to wavelength and angle changes.

Conclusions

In this paper, a method for measuring the polarization sensitivity of NPBS is proposed. The transmittance and reflectance are measured by simultaneously measuring the intensities of the transmitted/reflected circularly polarized light in the s- and p-polarization directions. The light source jitter, optical path system error, and error caused by inconsistencies in the detector response are eliminated through normalization correction. By using a polarization measurement system to measure the S2 and S3 Stokes components of the transmitted/reflected light, the s light and p light transmission/reflection phase difference of the NPBS can be obtained. Based on the above method, the measurement accuracy for transmittance and reflectance is -0.08%-+0.08% and the repeatability is better than 0.1%. The measurement accuracy of the transmission phase difference and reflection phase difference is -0.84%-+0.84%, and the repeatability is better than 1%. The proposed NPBS polarization sensitivity characteristic measurement method has the advantages of simple system structure, efficient data processing, high repeatability, and can eliminate the influence of light source jitter, optical path system error, and PD responsivity inconsistency. The method is significant for analyzing and compensating for the errors caused by an NPBS to obtain high-quality interferometer systems.

孟晨, 高珊, 姚晓天, 崔省伟, 郝鹏. 非偏振分光棱镜的偏振敏感度测量[J]. 中国激光, 2023, 50(5): 0504004. Chen Meng, Shan Gao, X. Steve Yao, Shengwei Cui, Peng Hao. Polarization Sensitivity Measurement Method for Non-Polarizing Beam Splitters[J]. Chinese Journal of Lasers, 2023, 50(5): 0504004.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!