大气与环境光学学报, 2022, 17 (4): 383, 网络出版: 2022-08-24  

合肥大气下行长波辐射估算模型研究与改进

Research and improvement of atmospheric downward longwave radiation estimation model for Hefei
作者单位
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 中国科学院通用光学定标与表征技术重点实验室,安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
摘要
大气下行辐射是地表辐射和能量平衡中的一个关键参数, 在反演地表温度和发射率、开展气候变化研究中起着关键作用。基于现有的大气下行辐射测量方法的分析比较, 开展了合肥大气下行长波辐射的研究。利用 MODTRAN 辐射传输模型模拟计算了合肥大气下行辐射通量, 并以该方法获取的大气下行辐射通量为基准, 对广泛应用的晴天经验模型进行性能评价, 验证了 Idso 模型和 ngstrm 模型对于合肥大气条件的适用性。进而利用 MODTRAN 辐射传输模型模拟数据对 Idso 模型中的参数进行修正, 提高了该模型的模拟精度。该研究为方便快捷准确地获取合肥大气下行辐射通量提供了可靠方法。
Abstract
Atmospheric downward radiation is a key parameter in surface radiation and energy balance. It plays a key role in retrieving surface temperature and emissivity and in the study of climate change. Based on the analysis and comparison of the existing atmospheric downward radiation measurement methods, the research of atmospheric downward longwave radiation of Hefei, China, is carried out. Hefei downward atmospheric radiant flux is simulated and calculated by using MODTRAN radiation transmission model, and then taking the atmospheric downward radiant flux obtained by this method as benchmark, the performance of the widely used sunny day empirical model is evaluated, and the applicability of Idso model and ngstrm model to Hefei atmospheric conditions is verified. In addition, the parameters in the Idso model are modified by using MODTRAN radiation transmission model simulation data to improve the simulation accuracy of the model. This study provides a reliable method for conveniently, quickly and accurately obtaining Hefei atmospheric downward radiant flux.
参考文献

[1] Tian G L, Liu Q H, Chen L F, et al. Thermal Remote Sensing (2nd Edition) [M] Beijing: Publishing House of Electronics industry, 2014: 208-213.

[2] Wang C L, Tang B H. Estimation of atmospheric downward longwave radiation with remotely sensed data [J]. Marine Science Bulletin, 2018, 37(02): 219-224.

[3] Li J, Zeng Q C. Infrared remote sensing of clear atmosphere and related inversion problem. Part II: Experimental study [J]. Scientia Atmospherical Sinica, 1997, 21(2): 214-222.

[4] ngstrm A. A study of the radiation of the atmosphere [J]. Smithsonian Institution Miscellaneous Collections, 1918, 65: 159-161.

[5] Brunt D. Notes on radiation in the atmosphere [J]. Quarterly Journal of the Royal Meteorological Society, 1932, 58: 389-418.

[6] Swinbank W C. Long-wave radiation from clear skies [J]. Quarterly Journal of the Royal Meteorological Society, 1964, 90(386): 488-493.

[7] Idso S B, Jackson R D. Thermal radiation from the atmosphere [J]. Journal of Geophysical Research, 1969, 74(23): 5397-5403.

[8] Brutsaert W. On a derivable formula for long-wave radiation from clear skies [J]. Water Resources Research, 1975, 11: 742-744.

[9] Idso S B. A set of equations for full spectrum and 8- to 14-μm and 10.5- to 12.5-μm thermal radiation from cloudless skies [J]. Water Resources Research, 1981, 17(2): 295-304.

[10] Brutsaert W. Evaporation into the Atmosphere [D]. Netherlands: Reidel Publishing Company, 1982: 139-140.

[11] Prata A J. A new long-wave formula for estimating downward clear-sky radiation at the surface [J]. Quarterly Journal of the Royal Meteorological Society, 1996, 122(533): 1127-1151.

[12] Iziomon M G, Mayer H, Matzarakis A. Downward atmospheric longwave irradiance under clear and cloudy skies: Measurement and parameterization [J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2003, 65(10): 1107-1116.

[13] Tang B, Li Z L. Estimation of instantaneous net surface longwave radiation from MODIS cloud-free data [J]. Remote Sensing of Environment, 2018, 112(9): 3482-3492.

[14] Wang W H, Liang S L. Estimation of high-spatial resolution clear-sky longwave downward and net radiation over land surfaces from MODIS data [J]. Remote Sensing of Environment, 2009, 113(4): 745-754.

[15] Gao B C, Kaufman Y J. Water vapor retrievals using moderate resolution imaging spectroradiometer (MODIS) near-infrared channels [J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D13): 4389.

[16] Crawford T M, Duchon C E. An improved parameterization for estimating effective atmospheric emissivity for use in calculating daytime downwelling longwave radiation [J]. Journal of Applied Meteorology, 1999, 38(4): 474-480.

[17] Maykut G A, Church P E. Radiation climate of barrow Alaska, 1962-66 [J]. Journal of Applied Meteorology, 1973, 12(4): 620-628.

[18] Konzelmann T, van de Wal R S W, Greuell W, et al. Parameterization of global and longwave incoming radiation for the Greenland Ice Sheet [J]. Global and Planetary Change, 1994, 9(1/2): 143-164.

[19] Gupta S K, Kratz D P, Stackhouse P W Jr, et al. Improvement of surface longwave flux algorithms used in CERES processing [J]. Journal of Applied Meteorology and Climatology, 2010, 49(7): 1579-1589.

[20] Inamdar A K, Ramanathan V. On monitoring the atmospheric greenhouse effect from space [J]. Tellus B, 1997, 49(2): 216-230.

[21] Zhou Y P, Kratz D P, Wilber A C, et al. An improved algorithm for retrieving surface downwelling longwave radiation from satellite measurements [J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D15): D15102.

[22] Morcrette J J, Deschamps P Y. Downward longwave radiation at the surface in clear sky atmospheres: Comparison of measured, satellite-derived and calculated fluxes [C]. Proc ISLSCP Conference, Rome, Italy, ESA SP-248, 1986: 257-261.

张允祥, 李新, 韦玮, 黄冬. 合肥大气下行长波辐射估算模型研究与改进[J]. 大气与环境光学学报, 2022, 17(4): 383. ZHANG Yunxiang, LI Xin, WEI Wei, HUANG Dong. Research and improvement of atmospheric downward longwave radiation estimation model for Hefei[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(4): 383.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!