硅酸盐通报, 2023, 42 (1): 338, 网络出版: 2023-03-16  

AOD炉渣对MgO-C砖的侵蚀机理研究

Study on Corrosion Mechanism of AOD Slag on MgO-C Brick
作者单位
1 武汉科技大学省部共建耐火材料与冶金国家重点实验室,武汉 430081
2 广西北港新材料有限公司,北海 536000
3 浙江父子岭特种耐火有限公司,湖州 313100
4 浙江宏丰炉料有限公司,湖州 313100
摘要
不锈钢生产主要采用氩氧精炼(AOD)炉冶炼工艺, 本文探究AOD炉渣对钢包内衬用MgO-C砖的侵蚀机理, 为提高钢包内衬用MgO-C砖的使用性能和服役寿命提供理论支撑。结合FactSage6.2软件、X射线衍射(XRD)、场发射扫描电子显微镜(SEM)和能量色散光谱(EDS)等测试手段分析炉渣侵蚀后MgO-C砖的物相变化、显微结构和化学成分变化。结果表明, 随着侵蚀反应的进行, 方镁石逐渐被熔蚀, 且逐步出现Ca3MgSi2O8等低熔点物相, 以及MgAl2O4等高熔点物相。AOD炉渣通过基质部分侵蚀渗透MgO-C砖, 并与方镁石反应生成Ca3MgSi2O8等低熔点物相, 熔蚀方镁石; 同时, 方镁石边界处生成MgAl2O4, 阻碍AOD炉渣对MgO-C砖的侵蚀渗透。
Abstract
The argon oxygen decarburization (AOD) furnace smelting process is widely used in the stainless-steel production. The corrosion mechanism of AOD slag to MgO-C bricks used by ladle lining was studied to provide theoretical basis for improving the service life and performance of MgO-C bricks used by ladle lining. The phase change, microstructure and chemical composition change of MgO-C bricks after corrosion were analyzed by FactSage6.2 software, X-ray diffraction (XRD), field emission scanning electron microscope (SEM) and energy dispersion spectrum (EDS). The results show that, as the corrosion reaction proceeds, periclase is gradually eroded, and the low melting point phases such as Ca3MgSi2O8 and the high melting point phases such as MgAl2O4 gradually appear. The corrosion is resulted by the penetration of AOD slag through the matrix in the MgO-C bricks, and the reaction between slag and periclase to form Ca3MgSi2O8. The generation of MgAl2O4 at the boundary of periclase hinders the corrosion of AOD slag to MgO-C bricks.
参考文献

[1] 程志旺,许 勇.不锈钢冶炼工艺技术[J].特钢技术,2011,17(1):1-5.

[2] 金沙江.不锈钢冶炼工艺及国内现状与发展[J].山西冶金,2017,40(5):43-44+104.

[3] 亓传军,赵 刚,何 敏,等.泰钢提高75 t钢包使用寿命的生产措施[J].山东冶金,2020,42(5):75+77.

[4] CAMPOS K S, LENZ E SILVA G F B, NUNES E H M, et al. The influence of B4C and MgB2 additions on the behavior of MgO-C bricks[J]. Ceramics International, 2012, 38(7): 5661-5667.

[5] GOKCE A S, GURCAN C, OZGEN S, et al. The effect of antioxidants on the oxidation behaviour of magnesia-carbon refractory bricks[J]. Ceramics International, 2008, 34(2): 323-330.

[6] 王堂玺,李享成,平振丰.电磁场环境下碳含量对MgO-C砖抗高碱度渣侵蚀性能的影响[J].耐火材料,2014,48(6):424-427.

[7] 李洪波.低碳钢对渣线砖侵蚀机理的研究[J].耐火与石灰,2022,47(3):27-29+33.

[8] CHEN L G, MALFLIET A, JONES P T, et al. Comparison of the chemical corrosion resistance of magnesia-based refractories by stainless steelmaking slags under vacuum conditions[J]. Ceramics International, 2016, 42(1): 743-751.

[9] GUO M, PARADA S, JONES P T, et al. Degradation mechanisms of magnesia-carbon refractories by high-alumina stainless steel slags under vacuum[J]. Ceramics International, 2007, 33(6): 1007-1018.

[10] 庞善洋.MgO-C砖受CaO-SiO2-Fe2O3系渣的侵蚀机理[J].国外耐火材料, 1999, (3): 57-58.

[11] 许 原,刘清才,陈登福,等.镁碳砖和铝碳砖在高钛渣中的侵蚀[J].钢铁钒钛,2002,23(4):6-9.

[12] KASIMAGWA I, BRABIE V, JNSSON P G. Slag corrosion of MgO-C refractories during secondary steel refining[J]. Ironmaking & Steelmaking, 2014, 41(2): 121-131.

[13] LIU Z Y, YU J K, WANG X N, et al. Comparative study of B4C, Mg2B2O5, and ZrB2 powder additions on the mechanical properties, oxidation, and slag corrosion resistance of MgO-C refractories[J]. Ceramics International, 2022, 48(10): 14117-14126.

[14] 刘 亮,艾锦瑾,尹艳山,等.FactSage模拟城市污泥与煤混燃过程中含铁、硫矿物的演变[J].环境科学与技术,2017,40(5):32-37.

[15] 韩 霄,曹颖川,景东荣,等.FactSage在钢渣处理研究中的应用[J].矿产综合利用,2019(3):102-107.

[16] 周治军,李玉山,韩 波.低碳镁钙碳砖与镁碳砖的抗AOD炉渣对比[J].耐火材料,2012,46(5):356-357+360.

[17] 吴启帆,包燕平,林 路,等.LF精炼渣的物相及其冷却过程研究[J].炼钢,2014,30(6):50-53.

[18] 李 楠,顾华志,赵惠忠.耐火材料学[M].2版.北京:冶金工业出版社,2022:54-55.

[19] 樊新丽.钢包用含碳耐火材料侵蚀机理研究[D].武汉:武汉科技大学,2009:8-10.

[20] 茅沈栋,杜 屏.降低MgO含量对高炉渣黏度和熔化性温度的影响[J].钢铁研究学报,2015,27(9):33-38.

周婷, 余俊, 黄学忠, 赵惠忠, 谈利强, 刘丛平. AOD炉渣对MgO-C砖的侵蚀机理研究[J]. 硅酸盐通报, 2023, 42(1): 338. ZHOU Ting, YU Jun, HUANG Xuezhong, ZHAO Huizhong, TAN Liqiang, LIU Congping. Study on Corrosion Mechanism of AOD Slag on MgO-C Brick[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(1): 338.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!