人工晶体学报, 2023, 52 (11): 1989, 网络出版: 2023-12-05  

洋葱碳基双极板制备及在PEMFCs中的应用

Preparation of Onion Carbon-Based Bipolar Plate and Its Application in PEMFCs
作者单位
1 太原理工大学材料科学与工程学院, 太原 030024
2 中新国际联合研究院, 能源平台, 广州 510555
摘要
以甲烷为碳源, 采用化学气相沉积(CVD)法制备了尺寸均匀(粒径在50~140 nm)的带有金属核心的纳米洋葱碳(CNOs)。通过微波加热对合成的CNOs进行纯化得到纯度为99%的洋葱碳材料, 并作为双极板导电填料应用于质子交换膜燃料电池(PEMFCs)电堆。通过CNOs的表征和分析表明, 合成的CNOs中内嵌Fe-Ni纳米金属粒子。由接触角测试可知, 注塑工艺制备的洋葱碳基双极板的润湿角低于91°, 亲水性较商用石墨双极板有所改善, 有利于电子的传输。经自呼吸电堆耐久性和功率测试发现, 由洋葱碳基双极板组装的电堆在13.2 V下的输出功率达到58 W, 比商业石墨双极板电堆输出功率(48 W)提高21%。研究证实洋葱碳基复合材料可以提高PEMFCs电堆的功率密度、效率及寿命。
Abstract
Metal-core carbon nano-onions (CNOs) with uniform size(50~140 nm) were prepared by chemical vapor deposition (CVD) method with methane as carbon source. The synthesized CNOs were purified by microwave heating to obtain an onion carbon material with a purity of 99%, and it was used as conductive bipolar plate in proton exchange membrane fuel cells (PEMFCs) stack. The characterization and analysis of CNOs show that the synthesized CNOs are embedded with Fe-Ni nanoparticles. The contact angle test reveals that the wetting angle of the onion carbon-based bipolar plate manufactured by injection molding is less than 91°, and the hydrophilicity is enhanced compared to the commercial graphite bipolar plate, which is helpful to electron transmission. The output power of the stack formed using onion carbon-based bipolar plates reaches 58 W at 13.2 V, which is 21% greater than that of the commercial graphite bipolar plate stack (48 W), according to the endurance and power test of the self-breathing stack. Onion carbon-based composites have been shown in studies to enhance the power density, efficiency, and longevity of PEMFCs stack.
参考文献

[1] CARAPELLUCCI R, GIORDANO L. Steam, dry and autothermal methane reforming for hydrogen production: a thermodynamic equilibrium analysis[J]. Journal of Power Sources, 2020, 469: 228391.

[2] NAIKOO G A, ARSHAD F, HASSAN I U, et al. Thermocatalytic hydrogen production through decomposition of methane-a review[J]. Frontiers in Chemistry, 2021, 9: 736801.

[3] RODAT S, ABANADES S, SANS J L, et al. A pilot-scale solar reactor for the production of hydrogen and carbon black from methane splitting[J]. International Journal of Hydrogen Energy, 2010, 35(15): 7748-7758.

[4] MURADOV N. Hydrogen via methane decomposition: an application for decarbonization of fossil fuels[J]. International Journal of Hydrogen Energy, 2001, 26(11): 1165-1175.

[5] BORETTI A, BANIK B K. Advances in hydrogen production from natural gas reforming[J]. Advanced Energy and Sustainability Research, 2021, 2(11): 2100097.

[6] DENIZ C, KARATEPE N. Hydrogen and carbon nanotube production via catalytic decomposition of methane[C]//SPIE NanoScience + Engineering. Proc SPIE 8814, Carbon Nanotubes, Graphene, and Associated Devices Ⅵ, San Diego, California, USA. 2013, 8814: 19-31.

[7] DHAND V, YADAV M, KIM S H, et al. A comprehensive review on the prospects of multi-functional carbon nano onions as an effective, high- performance energy storage material[J]. Carbon, 2021, 175: 534-575.

[8] BARTELMESS J, GIORDANI S. Carbon nano-onions (multi-layer fullerenes): chemistry and applications[J]. Beilstein Journal of Nanotechnology, 2014, 5: 1980-1998.

[9] SHARMA A, AGRAWAL A, PANDEY G, et al. Carbon nano-onion-decorated ZnO composite-based enzyme-less electrochemical biosensing approach for glucose[J]. ACS Omega, 2022, 7(42): 37748-37756.

[10] SU X L, ZHANG J, JIA Y, et al. Preparation and microwave absorption property of nano onion-like carbon in the frequency range of 8.2-12.4 GHz[J]. Journal of Alloys and Compounds, 2017, 695: 1420-1425.

[11] SIEMIASZKO G, HRYNIEWICKA A, BRECZKO J, et al. Carbon nano-onion induced organization of polyacrylonitrile-derived block star polymers to obtain mesoporous carbon materials[J]. Chemical Communications, 2022, 58(48): 6829-6832.

[12] UGARTE D. Canonical structure of large carbon clusters: Cn, n>100[J]. Europhysics Letters (EPL), 1993, 22(1): 45-50.

[13] MYKHAILIV O, ZUBYK H, PLONSKA-BRZEZINSKA M E. Carbon nano-onions: unique carbon nanostructures with fascinating properties and their potential applications[J]. Inorganica Chimica Acta, 2017, 468: 49-66.

[14] JIN H, WU S C, LI T, et al. Synthesis of porous carbon nano-onions derived from rice husk for high-performance supercapacitors[J]. Applied Surface Science, 2019, 488: 593-599.

[15] PAVLYUCHENKO P E, SEROPYAN G M, TRENIKHIN M V, et al. Structural transformations of a carbon nanomaterial under high-energy laser irradiation[J]. Russian Journal of General Chemistry, 2020, 90(3): 559-565.

[16] DOU F, SHI L Y, CHEN G R, et al. Silicon/carbon composite anode materials for lithium-ion batteries[J]. Electrochemical Energy Reviews, 2019, 2(1): 149-198.

[17] WANG D K, ZHOU C L, CAO B, et al. One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries[J]. Energy Storage Materials, 2020, 24: 312-318.

[18] 张卫珂, 付俊杰, 常 杰, 等. 纳米洋葱碳的制备及其纯化研究[J]. 新型炭材料, 2014, 29(5): 398-403.

[19] BOUHOUCH L, FADEL M, HILALI E. Magnetic properties of the electrolytic super alloys Ni-Fe[J]. Physica Status Solidi C, 2006, 3(9): 3253-3256.

[20] DERBELI M, BARAMBONES O, SILAA M Y, et al. Real-time implementation of a new MPPT control method for a DC-DC boost converter used in a PEM fuel cell power system[J]. Actuators, 2020, 9(4): 105.

[21] HE W D, ZOU J, WANG B, et al. Gas transport in porous electrodes of solid oxide fuel cells: a review on diffusion and diffusivity measurement[J]. Journal of Power Sources, 2013, 237: 64-73.

陈柳玲, 张卫珂, 张兰, 梁转转, 高博文, 李琦旺. 洋葱碳基双极板制备及在PEMFCs中的应用[J]. 人工晶体学报, 2023, 52(11): 1989. CHEN Liuling, ZHANG Weike, ZHANG Lan, LIANG Zhuanzhuan, GAO Bowen, LI Qiwang. Preparation of Onion Carbon-Based Bipolar Plate and Its Application in PEMFCs[J]. Journal of Synthetic Crystals, 2023, 52(11): 1989.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!