激光技术, 2022, 46 (5): 630, 网络出版: 2022-10-14   

基于连续谱束缚态的高Q太赫兹全介质超表面

High-Q terahertz all-dielectric metasurface based on bound states in the continuum
作者单位
中国计量大学 太赫兹技术与应用研究所, 杭州 310018
摘要
为了研究基于连续谱束缚态(BIC)高品质因子Q谐振, 提出了由双空心硅圆柱体组成太赫兹全介质超表面。采用数值模拟方法对结构的透射光谱及电磁场图进行了分析, 并利用本征模分析的方法研究了超表面结构参数对BIC频率的影响, 给出了该BIC超表面在太赫兹大频率范围工作的参数设计方法。结果表明, 在3.0THz左右实现了一个可调高Q环偶极Fano谐振; 本征模式的分析计算结果与入射电磁波模式的分析计算结果对称性不匹配,该超表面支持的是一个对称保护BIC。此研究为基于BIC的高Q超材料在超低阈值激光器件、非线性光学谐波产生及高灵敏度传感等领域的应用提供了理论参考。
Abstract
In order to study the high quality factor Q based on the bound state in the continuum (BIC), a terahertz all-dielectric metasurface composed of double hollow silicon cylinders was proposed. The transmission spectrum and electromagnetic field diagrams of the structure were simulated and analyzed. The eigenmode analysis was used to study the influence of the metasurface structure parameters on the BIC frequency, and a BIC metasurface working in a large terahertz frequency range was desigined. The results show that an adjustable high-Q toroidal dipole Fano resonance is realized at around 3.0THz. The results of symmetry mismatch between the eigenmode analysis calculation and the incident electromagnetic wave mode. The analysis indicate that the metasurface supports a symmetry-protected BIC. This research provides a theoretical reference for the application of high-Q metamaterials based on BIC in the fields of ultra-low threshold laser devices, nonlinear optical harmonic generation, and high-sensitivity sensing.
参考文献

[1] HSU C W, ZHEN B, LEE J, et al. Observation of trapped light within the radiation continuum[J]. Nature, 2013, 499(7457): 188-191.

[2] HSU C W, ZHEN B, STONE A D, et al. Bound states in the continuum[J]. Nature Reviews Materials, 2016, 1(9): 16048.

[3] AZZAM S I, KILDISHEV A V. Photonic bound states in the continuum: From basics to applications[J]. Advanced Optical Materials, 2020, 9(1): 2001469.

[4] SADRIEVA Z F, SINEV I S, KOSHELEV K L, et al. Transition from optical bound states in the continuum to leaky resonances: Role of substrate and roughness[J]. ACS Photonics, 2017, 4(4): 723-727.

[5] DOELEMAN H M, MONTICONE F, HOLLANDER W D, et al. Experimental observation of a polarization vortex at an optical bound state in the continuum[J]. Nature Photonics, 2018, 12(7): 397-401.

[6] POLTNIK Y, PELEG O, DREISOW F, et al. Experimental observation of optical bound states in the continuum[J]. Physical Review Letters, 2011, 107(18): 183901.

[7] YU Z J, XI X, MA J W, et al. Photonic integrated circuits with bound states in the continuum[J]. Optica, 2019, 6(10): 1342-1348.

[8] AZZAM S I, SHALAEV V M, BOLTASSEVA A, et al. Formation of bound states in the continuum in hybrid plasmonic-photonic systems[J]. Physical Review Letters, 121(25): 253901.

[9] MARINICA D C, BORISOV A G, SHABANOV S V. Bound states in the continuum in photonics[J]. Physical Review Letters, 2008, 100(18): 183902.

[10] ZHEN B, HSU C W, LU L, et al. Topological nature of optical bound states in the continuum[J]. Physical Review Letters, 2014, 113(25): 257401.

[11] MINKOV M, WILLIAMSON A D, XIAO M, et al. Zero-index bound states in the continuum[J]. Physical Review Letters, 2018, 121(26): 263901.

[12] ZHAO X G, CHEN C X, KAJ K, et al. Terahertz investigation of bound states in the continuum of metallic metasurfaces[J]. Optica, 2020, 7(11): 1548-1554.

[13] KUPRIIANOV A S, XU Y, SAYANSKIY A, et al. Metasurface engineering through bound states in the continuum[J]. Physical Review Applied, 2019, 12(1): 014024.

[14] ABUJETAS D R, HOOF N V, HUURNE S T, et al. Spectral and temporal evidence of robust photonic bound states in the continuum on terahertz metasurfaces[J]. Optica, 2019, 6(8): 996-1001.

[15] FRIEDRICH H, WINTGEN D. Interfering resonances and bound states in the continuum[J]. Physical Review, 1985, A 32(6): 3231-3242.

[16] CONG L, SINGH R. Symmetry-protected dual bound states in the continuum in metamaterials[J]. Advanced Optical Materials, 2019, 7(13): 1900383.

[17] HE Y, GUO G, FENG T, et al. Toroidal dipole bound states in the continuum[J]. Physical Review, 2018, B98(16): 161112.

[18] LI S Y, ZHOU C B, LIU T T, et al. Symmetry-protected bound states in the continuum supported by all-dielectric metasurfaces[J]. Physical Review, 2019, A100(6): 063803.

[19] FAN K, SHADRIVOV I V, PADOLLA W J, et al. Dynamic bound states in the continuum[J]. Optica, 2019, 6(2): 446-454.

[20] KODIGALA A, LEPEIT T, GU Q, et al. Lasing action from photonic bound states in continuum[J]. Nature, 2017, 541(7636): 196-199.

[21] HAN S, CONG L Q, SRIVASTAVA Y K, et al. All-dielectric active terahertz photonics driven by bound states in the continuum[J]. Advanced Materials, 2019, 31(37): 1901921.

[22] HA S T, FU Y H, EMANI N K, et al. Directional lasing in resonant semiconductor nanoantenna arrays[J]. Nature Nanotechnology, 2018, 13(11): 1042-1047.

[23] LIU Z J, XU Y, LIN Y, et al. High-Q quasibound states in the continuum for nonlinear metasurfaces[J]. Physical Review Letters, 2019, 123(25): 253901.

[24] MURAI S, ABUJETAS D R, CASTELLANOS G W, et al. Bound states in the continuum in the visible emerging from out-of-plane magnetic dipoles[J]. ACS Photonics, 2020, 7(8): 2204-2210.

[25] ABUJETAS D R, BARREDA , MORENO F, et al. High-Q transparency band in all-dielectric metasurfaces induced by a quasi bound state in the continuum[J]. Laser Photonics Reviews, 2021, 15(1): 2000263.

[26] LUO X, LI X J, HONG Z, et al. Excitation of high Q toroidal dipole resonance in an all-dielectric metasurface[J]. Optical Materials Express, 2020, 10(2): 358-368.

[27] HUANG C, ZHANG C, XIAO S, et al. Ultrafast control of vortex microlasers[J]. Science, 2020, 367(6481): 1018-1021.

[28] CARLETTI L, KOSHELEV K, ANGELIS C D, et al. Giant nonlinear response at the nanoscale driven by bound states in the continuum[J]. Physical Review Letters, 2018, 121(3): 033903.

[29] YESIKOY F, ARVELO E R, JAHANI Y, et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces[J]. Nature Photonics, 2019, 13(6): 390-396.

[30] TITTL A, LEITIS A, LIU M K, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 2018, 360(6393): 1105-1109.

[31] SRIVASTAVA Y K, AKO R T, GUPTA M, et al. Terahertz sensing of 7nm dielectric film with bound states in the continuum metasurfaces[J]. Applied Physics Letters, 2019, 115(15): 151105.

[32] WANG Y L, HAN Z H, DU Y, et al. Ultrasensitive terahertz sensing with high-Q toroidal dipole resonance governed by bound states in the continuum in all-dielectric metasurface[J]. Nanophotonics, 2021, 10(4): 1295-1307.

[33] ZHOU C B, LI S Y, WANG Y, et al. Multiple toroidal dipole Fano resonances of asymmetric dielectric nanohole arrays[J]. Physical Review, 2019, B100(19): 195306.

[34] WANG Z H, CHEN L L, HONG Z, et al, Analogue of electromagnetically induced transparency with ultra-narrow bandwidth in a silicon terahertz metasurface[J]. Optical Materials Express, 2021, 11(7): 1943-1952.

[35] LIU Y H, LUO Y, JIN X Y, et al. High-Q Fano resonances in asymmetric and symmetric all-dielectric metasurfaces[J]. Plasmonics, 2017, 12(5): 1431-1438.

[36] ZHOU C B. The study of Fano resonance in all-dielectric nanostructures and their applications[D]. Wuhan: Huazhong University of Science and Technology, 2019: 16-18(in Chinese).

[37] MA T, HUANG Q P, HE H C, et al. All-dielectric metamaterial analogue of electromagnetically induced transparency and its sensing application in terahertz range[J]. Optica Express, 2019, 12(27): 16624-16634.

[38] GALLI M, PORTALUPI S L, BELOTTI M, et al. Light scattering and Fano resonances in high-Q photonic crystal nanocavities[J]. Applied Physics Letters, 2009, 94(7): 071101.

[39] WANG X F, LI S Y, ZHOU C B. Polarization-independent toroidal dipole resonances driven by symmetry-protected BIC in ultraviolet region[J]. Optical Express, 2020, 28(8): 11983-11989.

[40] SAVINOV V, FEDOTOV V A, ZHELUDEV N I, et al. Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials[J]. Physical Review, 2014, B89(20): 205112.

[41] GAN X, SHIUE R J, GAO Y. High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene[J]. Nano Letters, 2013, 13(2): 691-696.

[42] ZHOU C B, LIU G Q, BAN G X, et al. Tunable Fano resonator using multilayer graphene in the near-infrared region[J]. Applied Physical Letters, 2018, 112(10): 101904.

[43] QIU X Z. The study of silicon-based all-dielectric metasurface and light emitters[D].Wuhan: Huazhong University of Science and Technology, 2019: 23-26(in Chinese).

[44] KOSHELEV K, LEPESHOV S, LIU M, et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum[J]. Physical Review Letters, 2018, 121(19): 193903.

王鹏飞, 贺风艳, 刘建军, 井绪峰, 洪治. 基于连续谱束缚态的高Q太赫兹全介质超表面[J]. 激光技术, 2022, 46(5): 630. WANG Pengfei, HE Fengyan, LIU Jianjun, JING Xufeng, HONG Zhi. High-Q terahertz all-dielectric metasurface based on bound states in the continuum[J]. Laser Technology, 2022, 46(5): 630.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!