光通信技术, 2023, 47 (3): 0086, 网络出版: 2024-01-28  

光声光谱气体检测系统中光声池的仿真优化设计

Simulation and optimization design of photoacoustic cell in photoacoustic spectroscopy gas detection system
作者单位
西安石油大学 理学院,西安 710000
摘要
针对特定场合对光声光谱气体检测系统中光声池特征频率的设计需求,利用有限元分析法,以一阶圆柱形共振光声池为研究对象进行声学模态仿真,获得了前8阶声学模态;仿真分析谐振腔、缓冲室的半径和长度对光声池特征频率和光声信号强度的影响。仿真结果表明:当谐振腔半径为3 mm时,谐振腔长度为120 mm,缓冲室的半径、长度分别为14.7 mm、60 mm是光声池特征频率在1 400 Hz附近的最佳尺寸。
Abstract
In view of the design requirements of the characteristic frequency of the photoacoustic cell in the photoacoustic spectroscopy gas detection system in specific occasions, the first eight acoustic modes are obtained by using the finite element analysis method and taking the first order cylindrical resonant photoacoustic cell as the research object. This paper simulates and analyzes the influence of the radius and length of the resonant cavity and buffer chamber on the characteristic frequency and photoacoustic signal strength of the photoacoustic cell. The simulation results show that when the radius of the resonant cavity is 3 mm, the length of the resonant cavity is 120 mm, and the radius and length of the buffer chamber are 14.7 mm and 60 mm respectively, which are the optimal dimensions for the characteristic frequency of the photoacoustic cell around 1 400 Hz.
参考文献

[1] WEBBER M E, MACDONALD T, PUSHKARSKY M B, et al. Agricultural ammonia sensor using diode lasers and photoacoustic spectroscopy[J]. Measurement Science and Technology, 2005, 16(8): 1547-1553.

[2] HUSSAIN A, PETERSEN W, STALEY J, et al. Quantitative blood oxygen saturation imaging using combined photoacoustics and acousto-optics[J]. Optics letters, 2016, 41(8): 1720-1723.

[3] LIU Q, NIU M S, WANG G S, et al. Development of a photoacoustic spectroscopy system for the measurement of absorption coefficient of atmospheric aerosols[J]. Spectroscopy and Spectral Analysis, 2013, 33(7): 1729-1733.

[4] 邵晓鹏,张乐,刘丽娴,等. 基于光声光谱技术的多组分气体探测研究进展[J]. 数据采集与处理,2021,36(5):850-871.

[5] PENG Y, YU Q X. Tunable fiber laser based photoacoustic specroscopy for acetylene detection[J]. Spectroscopy and Spectral Analysis, 2009, 29(8): 2030-2033.

[6] WANG J, ZHANG W, LIANG L, et al. Tunable fiber laser based photoacoustic spectrometer for multi-gas analysis[J]. Sensors and Actuators B: Chemical, 2011, 160(1): 1268-1272.

[7] CHEN W G, LIU B J, HUANG H X. Photoacoustic sensor signal transmission line model for gas detection in transformer oil[J]. Sensor Letters, 2011, 9(4): 1511-1514.

[8] 程刚,曹渊,刘锟,等. 光声光谱检测装置中光声池的数值计算及优化[J]. 物理学报,2019,68(7):139-149.

[9] 赵南,刘阳,赵宁阳,等. 光声光谱检测系统中光声池模型的建立与优化[J]. 光子学报,2021,50(7): 246-256.

[10] HANSON R K, SPEARRIN R M, GOLDENSTEIN C S. Spectroscopy and optical diagnostics for gases[M]. New York: Springer International Pub-lishing Switzerland, 2016.

[11] 杨志远,卢荣军,王生春. 一种纵向共振光声池谐振频率测量方法[J]. 激光技术,2019,43(3):387-391.

[12] 殷庆瑞,王通,钱梦碌,等. 光声光热技术及其应用[M]. 北京:科学出版社,1991.

[13] LI J, GAO X, LI W, et al. Near-infrared diode laser wavelength modulation-based photoacoustic spectrometer[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2006, 64(2): 338-342.

[14] HUANG Q, ZHOU S, HE T, et al. Modeling of a cylindrical resonant photoacoustic cell for high sensitive gas detection[J]. Microwave and Optical Technology Letters, 2021, 63(10): 2528-2534.

[15] 李劲松,刘锟,张为俊,等. 近红外波段 CO2 分子弛豫动力学效应对光声信号的影响[J]. 光谱学与光谱分析,2008,28(9):1953-1957.

闫星宇, 傅海威, 雍振, 王晓玲, 张泽, 赵子良. 光声光谱气体检测系统中光声池的仿真优化设计[J]. 光通信技术, 2023, 47(3): 0086. YAN Xingyu, FU Haiwei, YONG Zhen, WANG Xiaoling, ZHANG Ze, ZHAO Ziliang. Simulation and optimization design of photoacoustic cell in photoacoustic spectroscopy gas detection system[J]. Optical Communication Technology, 2023, 47(3): 0086.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!