光谱学与光谱分析, 2023, 43 (9): 2825, 网络出版: 2024-01-12  

可见近红外光谱结合多元统计分析的面粉吸水率检测模型构建

Model Construction for Detecting Water Absorption in Wheat Flour Using Vis-NIR Spectroscopy and Combined With Multivariate Statistical Analyses
作者单位
1 中国农业科学院农产品加工研究所/农业农村部农产品加工综合性重点实验室, 北京 100193韶关学院生物与农业学院, 广东 韶关 512005
2 中国农业科学院农产品加工研究所/农业农村部农产品加工综合性重点实验室, 北京 100193
摘要
面粉吸水率是评价面粉质量和预测面制品加工特性的重要品质性状。 面粉吸水率的测定主要参照国际或国家标准利用粉质仪进行, 其测定方法费时费力。 基于此, 提出利用可见近红外光谱分析技术结合多元统计分析进行面粉吸水率快速、 无损检测。 参照国标法测定150份小麦面粉样品的吸水率, 面粉吸水率变幅为53.10%~74.50%。 利用可见近红外分析仪采集面粉样品的光谱信息, 有效光谱范围为570~1 100 nm。 采用偏最小二乘回归(PLSR)、 主成分回归(PCR)和支持向量机回归(SVR)将光谱信息和面粉吸水率进行关联, 分别建立面粉吸水率的定量分析预测模型, 筛选最优的建模方法。 在优选的建模方法的基础上, 采用竞争性自适应重加权(CARS)、 区间随机蛙跳(iRF)、 迭代保留信息变量(IRIV)和连续投影(SPA)算法提取特征波长, 筛选最优的特征波长提取算法。 基于最优的建模方法和最优的特征波长提取算法提取的特征波长, 采用标准化(NL)、 一阶求导(1st Der)、 基线校正(BL)、 标准正态变换(SNV)和去趋势化(DT)5种光谱预处理方法对特征波长的光谱进行预处理, 筛选最优的光谱预处理方法。 结果表明, 采用NL光谱预处理方法对CARS算法提取的24个特征波长(仅占原始波长的2.26%)的光谱进行预处理后建立的PLSR模型性能最佳, 预测集相关系数(R2p)、 预测集均方根误差(RMSEP)和预测相对分析误差(RPD)分别为0.889 4、 1.458 5和2.641 3。 采用CARS算法提取的特征波长所建的模型不仅能提高模型的性能, 还很大程度提高模型运算效率、 降低仪器制造成本和光谱仪微型化的难度, 从而为面粉吸水率可见近红外无损、 快速检测研究奠定了基础。
Abstract
The water absorption rate of flour is an important quality parameter for evaluating flour quality and predicting the processing characteristics of flour-based products. Determining the water absorption rate is mainly conducted using a gluten analyzer according to international or national standards, which is time-consuming and labor-intensive. Therefore, this study proposes using visible near-infrared spectroscopic analysis technology for rapid and non-destructive detection of the water absorption rate of flour. The water absorption rates of 150 wheat flour samples were determined according to the national standard method, and the value rang from 53.10% to 74.50%. The spectral information of the flour samples was collected using a visible near-infrared spectrometer, with an effective spectral range from 570 to 1 100 nm. Partial least squares regression (PLSR), principal component regression (PCR), and support vector machine regression (SVR) was used to correlate the spectral information with the water absorption rate of flour. Quantitative analysis prediction models for the water absorption rate were established, and the optimal modeling methods were selected. Based on the selected modeling methods, competitive adaptive reweighted sampling (CARS), interval random frog leaping (iRF), iterative variable selection using the retained informative variables (IRIV), and successive projections algorithm (SPA) were employed to extract feature wavelengths and select the optimal feature wavelength extraction algorithm. Five spectral preprocessing methods, including normalization (NL), first derivative (1st Der), baseline correction (BL), standard normal variate (SNV), and detrending (DT), were applied to preprocess the spectral data of the feature wavelengths. The optimal spectral preprocessing method was determined. The results showed that the PLSR model built after preprocessing the spectra of the 24 feature wavelengths (only 2.26% of the original wavelengths) extracted by the CARS algorithm using the NL spectral preprocessing method achieved the best performance. The correlation coefficient (R2p), root mean square error of prediction (RMSEP), and relative prediction deviation (RPD) for the prediction set were 0.889 4, 1.458 5, and 2.641 3, respectively. The model built using the feature wavelengths extracted by the CARS algorithm not only improved the models performance but also significantly increased the computational efficiency, reduced instrument manufacturing costs, and alleviated the challenges of miniaturizing the spectrometer. This study provides a foundation for the non-destructive and rapid detection of the water absorption rate of flour using visible near-infrared spectroscopy.
参考文献

[1] XU Nuo, LI Hui, GAO Han, et al(许 诺, 李 辉, 高 寒, 等). Food Science and Technology(食品科技), 2022, 47(6): 184.

[2] LI Wei-hua(李卫华). Modern Flour Milling Industry(现代面粉工业), 2013, 27(3): 41.

[3] WEI Yi-min(魏益民). Grain Quality and Food Quality-Wheat Grain Quality and Food Quality(谷物品质与食品品质-小麦籽粒品质与食品品质). Xian: Shaanxi Renmin Publishing Company(西安: 陕西人民出版社), 2002. 7.

[4] WANG Feng-lei(王风雷). Food & Machinery(食品与机械), 2022, 38(11): 33.

[5] CAO Ying-ni, HU Jing-zhi, YU Da-jie, et al(曹颖妮, 胡京枝, 余大杰, 等). Journal of Triticeae Crops(麦类作物学报), 2015, 35(5): 645.

[6] Ren G X, Ning J M, Zhang Z Z. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 245: 118918.

[7] Li W W, Lin M, Huang Y M, et al. Journal of Physics: Conference Series, 2017, 887(1): 012046.

[8] Sharabiani V R, Nazarloo A S, Taghinezhad E. Yuzuncu Yil Universities Tarim Bilimleri Dergisi, 2019, 29(1): 43.

[9] Fan Y, Ma S, Wu T. Infrared Physics & Technology, 2020, 105: 103213.

[10] JIANG Ming-wei, WANG Cai-hong, ZHANG Qing-hui(姜明伟, 王彩红, 张庆辉). Journal of Henan University of Technology(Natural Science Edition)[河南工业大学学报(自然科学版)], 2020, 41(6): 91.

[11] Tian W, Chen G, Zhang G, et al. Food Chemistry, 2021, 344: 128633.

[12] Jiang H, Liu T, Chen Q. Infrared Physics & Technology, 2020, 109: 103423.

[13] ZHANG Li-xin, YANG Cui-fang, CHEN Jie, et al(张立欣, 杨翠芳, 陈 杰, 等). Food and Fermentation Industries(食品与发酵工业), 2022, 48(20): 36.

[14] DIWU Peng-yao, BIAN Xi-hui, WANG Zi-fang, et al(第五鹏瑶, 卞希慧, 王姿方, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2019, 39(9): 2800.

[15] Chen J, Zhu S, Zhao G. Food Chemistry, 2017, 221(2): 1939.

[16] Ye D, Sun L, Zou B, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 189: 463.

[17] Nicola B M, Beullens K, Bobelyn E, et al.Postharvest Biology and Technology, 2007, 46(2): 99.

[18] YU Hong-wei, LIU Hong-zhi, YANG Ying, et al(于宏威, 刘红芝, 杨 颖, 等). Farm Products Processing(农产品加工), 2016, (23): 39.

[19] WU Yong-qing, LI Ming, HE Yuan-yuan, et al(吴永清, 李 明, 贺媛媛, 等). Journal of the Chinese Cereals & Oils Association(中国粮油学报), 2021, 36(4): 133.

[20] LIN Jiang-tao, GU Yu-juan, YANG Ke-jing, et al(林江涛, 谷玉娟, 杨珂静, 等). Cereals and Oils(粮食与油脂), 2017, 30(11): 69.

[21] YAN Yan-lu, ZHAO Long-lian, HAN Dong-hai, et al(严衍禄, 赵龙莲, 韩东海, 等). Fundamentals and Applications of Near-Infrared Spectroscopy(近红外光谱分析基础与应用). Beijing: China Light Industry Press(北京: 中国轻工业出版社), 2005. 32.

[22] CHU Xiao-li, YUAN Hong-fu, LU Wan-zhen(褚小立, 袁洪福, 陆婉珍). Progress in Chemistry(化学进展), 2004, (4): 528.

吴永清, 唐娜, 黄璐瑶, 崔雨同, 张波, 郭波莉, 张影全. 可见近红外光谱结合多元统计分析的面粉吸水率检测模型构建[J]. 光谱学与光谱分析, 2023, 43(9): 2825. WU Yong-qing, TANG Na, HUANG Lu-yao, CUI Yu-tong, ZHANG Bo, GUO Bo-li, ZHANG Ying-quan. Model Construction for Detecting Water Absorption in Wheat Flour Using Vis-NIR Spectroscopy and Combined With Multivariate Statistical Analyses[J]. Spectroscopy and Spectral Analysis, 2023, 43(9): 2825.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!