中国激光, 2023, 50 (18): 1813004, 网络出版: 2023-08-10  

基于超构表面的多维光信息加密 下载: 1070次亮点文章特邀综述

Metasurface-Based Multidimensional Optical Information Encryption
作者单位
暨南大学纳米光子学研究院广东省纳米光学操控重点实验室,广东 广州 511443
摘要
信息技术的发展使得信息加密变得日益重要。光学加密作为一种信息加密手段,具有多维度和高并发速度等优势。然而,传统的光学加密方案往往需要复杂和笨重的光学元件,这导致器件难以小型化和便携化,同时也降低了加密效率。超构表面是一种人工设计的二维平面结构,能够在亚波长尺度上实现对光场的灵活调控,为光学加密提供了一个灵活的平台。近年来,基于超构表面的光学加密方法不断涌现,其利用光在输入端和输出端的多维度来增加加密的复杂度和安全性。基于此,根据加密的端口类型,分别从单一输入端、单一输出端以及输入-输出端联合三个方面对这些方法进行了分析和讨论,并对超构表面光学加密的未来发展趋势进行了展望。
Abstract
Significance

Optical encryption is a technique that uses light as a multidimensional carrier of information to encode and decode plaintext images through optical transformations. It has advantages over traditional encryption methods in terms of complexity, security, robustness, and reliability. However, conventional optical encryption schemes often rely on complex and bulky optical components that limit their efficiency and portability. Metasurfaces are artificial structures that can manipulate light at subwavelength scales and control its amplitude, phase, and polarization. They provide a flexible and efficient platform for optical encryption by using different metasurface structures to modulate the incident light and generate encrypted images. The basic principle of metasurface optical encryption is to use the structure to control the input and output keys of the light, the optical parameters modulating the incident light and encrypted image respectively. Only by knowing the correct input and output keys can one decrypt the image and recover the original information. The metasurface structures can utilize different dimensions of light at the input and output ports, such as wavelength, polarization, incident angle, and distance, to achieve single- or dual-port encryption. This study summarizes and discusses three types of metasurface optical encryption schemes, namely, single-input port, single-output port, and input-output port combination, as shown in Fig. 1.

Progress

Metasurface-based optical encryption can utilize the multiple dimensions of light at the input and output ports. For any light beam, all of its parameter dimensions at the input and output ports have definite values, and identifying the dimensions that are used for encryption when information for only one image exists is difficult. Therefore, we focus on the optical encryption that changes at least one or more dimensions to encrypt multiple image signals. The optical encryption based on a single-input port is first discussed, where the analyzed parameters at the output port are fixed. For optical encryption at an input port, we discuss the use of only one parameter dimension, such as wavelength, polarization, and incident angles, to encrypt image signals (Fig. 2). The multiple optical parameter dimensions at the input port can be combined to encrypt different image signals to provide more independent encryption information channels (Fig. 3). At the output port, the dimensions of light can be used for optical encryption, whereas those at the input port are fixed (Fig. 4). Finally, input-output port joint optical encryption schemes are discussed, where different combinations of optical parameter dimensions at the input and output ports are used to encrypt and decrypt the image signals. These include polarization dimension input-polarization dimension output (Fig. 5), polarization dimension input-multiple dimension output (Fig. 6), wavelength dimension input-other dimension output (Fig. 7), incidence angle dimension input-diffraction distance dimension output (Fig. 8), and multiple dimension input-other dimension output (Fig. 9).

Conclusions and Prospects

We discuss the recent progress and challenges of metasurface optical encryption. Various optical-field manipulation mechanisms have been previously proposed based on metasurfaces, which can achieve different degrees of freedom of the Jones matrix from one to eight, the highest possible in nature. This multiple-degree-of-freedom optical-field manipulation and new mechanisms lay the foundation for enhancing the complexity and security of optical information encryption. However, challenges remain in the field of metasurface optical encryption, such as the crosstalk phenomenon, limited utilization of light dimensions, lack of integration with other physical signals, and absence of dynamic control capabilities. We suggest that further research can be conducted to optimize and improve the performance and reliability of metasurface optical encryption and storage.

1 引言

近年来,信息技术和互联网技术飞速发展,信息安全面临着巨大挑战,因此开发出免受恶意攻击和不易篡改的加密技术显得尤为重要。信息加密技术的核心是利用一定的算法和密钥,对原始信息进行变换和编码,使其只能在输入正确密钥的情况下才能被还原。为了提高信息加密技术的安全性,密钥的维度应该尽可能多,从而增加破解的难度和成本。光作为日常生活中常见的一种媒介,具有振幅、相位、偏振、角度、波长、空间坐标、衍射成像距离等多重维度。利用其作为多维的信息载体,通过干涉、衍射、成像等光学变换过程,对明文图像进行扰乱编码1-5,设计的光学加密方案和密钥空间具有多维、大容量、高设计自由度等突出优势。光学加密这一优势在全息存储6-7、数字水印8-10、身份验证11-14等领域中有着广阔的应用前景。

传统的光学加密方案主要通过光学变换(例如干涉、衍射、成像等过程)对明文的图像等信息进行扰乱编码,从而达到加密的效果。这一过程通常依赖一些复杂和笨重的光学元件,如空间光调制器、透镜、光子晶体15-17,而且还需要对图像进行多个步骤的光学变换和数字处理,导致加密效率低下。超构表面是人工设计的具有特殊电磁响应的二维平面结构,能够在亚波长尺度对光场的振幅、相位、偏振态等多重光参量进行灵活的调控18-35,实现全息、涡旋光、超透镜等光学功能,这一结构为光学加密提供了一个灵活和高效的平台。近年来,人们提出各种基于超构表面的光学加密方法,例如偏振编码36-41、轨道角动量编码42-46等,来提升加密的复杂度和安全性。同时,利用超构表面对光场的多维操控可以实现多功能的光学加密,例如同时实现图像加密和水印的功能,增强了加密的鲁棒性和可靠性。

超构表面光学加密的基本原理是将加密信息通过算法隐藏到结构的复振幅中,然后通过入射和探测光的特定维度,实现图像信息的加密和解密。在这个过程中,光场有两个关键的端口,即输入端和输出端,分别承载着输入密钥和输出密钥。输入密钥是指入射光场的光参量,如波长、相位、偏振态等,它们决定了超构表面对光场的响应特性。输出密钥是指输出端在特定参数下接收到的光场,这些参量包含偏振、观测角度、衍射距离等信息。只有在知道正确输入密钥和输出密钥的情况下,才能够对输出端的光场进行解密,从而恢复原始的图像信息。在这些基于超构表面结构的光学加密方案中,光在输入和输入端的维度各有不同,有些方案只利用了一端,有些方案则同时利用了两端。因此,本文将以输入和输出端为出发点,分别从单一输入端、单一输出端以及输入-输出端联合三个方面对基于超构表面结构的光学加密进行总结和探讨,如图1所示。

图 1. 基于超构表面结构的多维光信息加密示意图

Fig. 1. Schematic of metasurface-based multi-dimensional optical information encryption

下载图片 查看所有图片

2 单一输入端光学加密

在输入端,光具有多重参量维度,例如振幅、相位、偏振、入射角度、波长以及水平空间坐标等。通过超构表面结构的设计,可以对特定光参量的图像信号实现加密。需要指出的是,对于任意一束光,其在输入和输出端的这些维度都有确定的参量值。对于只存在单一图像信号的情况,难以识别采用了哪些维度进行加密。因此,在本文中,我们关注的光学加密是通过改变至少一个或多个维度,实现多个图像信号的加密。这不仅有助于分析光学加密的机制,而且多个图像信号可以提高加密效果和安全性,它们既可以作为真实解密的信号,也可以作为伪图进行干扰。对于单一输入端的光学加密来说,在输出端,此时光的各种参量维度保持不变。

2.1 单一维度信息加密

在输入端,光学加密的一种简单方法是通过改变光的某个单一参量维度,实现不同图像信号的生成和加密。在本文中,我们不讨论非线性的光学加密47-49,只考虑线性的光学加密,此时超构表面对输入光的振幅变化不敏感,也不依赖于输入光的初始相位,因此振幅和相位不能作为单一参量维度进行加密。只有振幅和相位与其他参量维度结合,如与水平空间坐标维度结合,形成空间上变化的振幅分布或相位分布,才能引起超构表面的不同光学响应。因此,我们重点探讨其他光参量作为单一维度进行信号加密的情况[图2(a)]。

图 2. 纯输入端单一维度超构表面结构光学信息加密。(a)基于结构空间复用的波长维度光学加密50;(b)入射角度维度复用的光学加密53;(c)基于入射角度维度的四通道加密54;(d)左右旋圆偏振光学加密方案36;(e)通过在琼斯矩阵中引入噪声,实现11个偏振复用通道37

Fig. 2. Metasurface-based optical information encryption with single dimensional for single pure input. (a) Wavelength-dimensional optical encryption based on spatial multiplexing[50]; (b) optical encryption based on angle-of-incidence dimensional multiplexing[53]; (c) four-channel optical encryption based on angle-of-incidence dimension[54]; (d) optical encryption scheme with left and right circular polarization[36]; (e) realizing 11 polarization multiplexing channels by introducing noise into Jones matrix[37]

下载图片 查看所有图片

波长(频率)作为光的重要参量,在信息加密中起着关键作用。要实现超构表面波长光学加密,关键是超构表面结构需满足多个波长下特定的光响应。受限于结构尺寸,超构表面有效光调控的波长一般控制在一定范围内。传统的超构表面结构设计往往只针对单一波长,无法满足多个波长的要求。一种常用的设计方式是采用空间复用方式,即在一个像素单元中,将多套在不同波长下响应的结构交错复用排列,并降低不同波长之间结构的串扰,从而实现多个波长下的光学加密50-51图2(a)给出了一种基于Si纳米结构复用的方案50,在一个像素中设计三种结构尺寸,分别对红、绿、蓝三种颜色的光进行操控,得到不同的全息图像。虽然结构尺寸经过优化后可降低不同波长之间的串扰,但仍然无法完全避免串扰。后续研究人员提出的一些非交错的设计方案也能实现对不同波长的独立光响应,然而这些方案会与其他维度结合52,因此不在单一输入端讨论范畴内。

光的入射角度,即入射波矢方向,也能用于光学加密。对于常见的结构,它们对入射光的角度依赖性很低,因此在不同角度下观察到的物体图像变化不大。为了提高光学加密系统的安全性和鲁棒性,需要设计具有强角度依赖性的超构表面结构。2017年,Kamali等53提出了一种利用超构表面实现角度复用全息图像显示的方法,该结构能够在0°和30°两个不同入射角下激发不同共振模式,并产生两幅具有独立相位分布的全息图像[图2(b)]。基于结构复用技术和迂回相位54,这一双通道角度加密可以进一步提升到四通道角度加密[图2(c)]。除了产生全息图案外,基于本课题组发展的相干像素的设计原理55,Tang等56在0°和20°入射角度下演示了不同打印图像的显示。这一方案在一个像素中引入了多个子结构,增加了像素的尺寸,带来了分辨率的降低。

偏振具有两个独立的自由度,常可以分解为独立的x偏振和y偏振。基于此,通过设计纳米结构的长宽尺寸,容易实现正交线偏振入射下独立的图像加密57-58。对于其他正交偏振态,例如左旋光和右旋光,要实现图像变化,可以利用高的圆二色性结构实现。例如图2(d)所示的V形纳米孔阵列结构36,其具有高的圆二色性和大的透射线偏振特性,可以通过纳米孔的转角控制透射线偏振态。将两种手性结构交错排列在一起,基于Malus定律,在透射端选择特定的线偏振态,从而实现圆偏振态入射下不同强度分布的图像加密。由于偏振具有两个自由度,一般而言,其他偏振态(非xy偏振态)的光响应都可以看成两个正交偏振态的线性叠加,不会产生新的加密信息。而在2023年,Xiong等37将噪声引入琼斯矩阵设计中,打破了源于琼斯矩阵维数约束的超构表面偏振复用能力的限制。实验证明,通过入射不同偏振态可以得到完全不同且独立的全息图像,最高达到11个,这是目前为止偏振复用通道的最高容量[图2(e)]。

2.2 多维度信息加密

与单一维度的光信号操控相比,将光的偏振、相位、波长、角度等多个维度组合进行光学加密可以提供更多独立的编码信息通道。

相位作为独立维度无法实现不同光响应,但与水平空间坐标维度结合后,可以产生具有空间相位分布的光场,能够引起超构表面不同的光响应。其中一类具有特殊相位空间分布的光是涡旋光,其在信息加密中具有广泛应用。涡旋光束具有环形强度分布,其相位因子具有螺旋波前分布exp(i),其中φ为方位角,l为整数,代表拓扑荷数。显然,将不同拓扑荷数的涡旋光输入结构中,其光响应是不同的。如何精确调控不同光响应以进行光学加密是一个难题。2019年,基于超构表面的涡旋光角动量加密被提出42-43。2020年,Fang等43基于空间频域的概念,实现了无理论数量限制的角动量涡旋光独立全息图,并实验验证了当入射涡旋光的拓扑电荷数为-50~50之间10个均等数值时,可生成10个不同阿拉伯数字0~9的复用全息图[图3(a)]。由于在全息图像的重建中,涡旋拓扑荷数是一个不变量,因此重建的全息图像的每个像素都保持着与入射涡旋光束相同的拓扑荷数。当输入一个相反螺旋指数的涡旋光束时,只有对应的拓扑荷全息图才能变成具有更高强度的高斯模式,从而进一步实现涡旋光的选择性全息显示。后续工作44通过飞秒激光直写技术加工制备了3D手性超螺旋单元结构,同样也验证了具有相反拓扑荷数的涡旋光束可以进行选择性的全息加密。近日,段辉高课题组通过进一步结合自旋的偏振维度,实现了不同自旋态下不同角动量的全息显示45

图 3. 多重维度输入的超构表面结构光学信息加密。(a)基于空间与相位维度组合而成的涡旋光,实现轨道角动量全息图43;(b)波长和偏振维度组合输入实现两幅独立全息图59;(c)基于相干像素设计实现输入端波长、偏振、入射角度维度组合的光学加密55

Fig. 3. Metasurface-based multidimensional optical information encryption at pure input. (a) Achieving orbital angular momentum hologram based on vortex light combined with space and phase dimensions[43]; (b) two independent holographic images with input combining wavelength and polarization dimensions[59]; (c) optical encryption based on coherent pixel design realized by combining wavelength, polarization, and incident angle dimensions at input[55]

下载图片 查看所有图片

利用偏振和波长两个维度的组合实现双维度光加密的一个例子59图3(b)所示。通过优化设计TiO2纳米结构的尺寸,实现了可见光波段双波长正交线性偏振光的独立全息显示。具体而言,当波长为532 nm的x线偏振光和波长为633 nm的y线偏振光分别入射到超构表面上时,在同一观察平面上可以获得低串扰的不同显示输出图像。

本课题组在2018年提出的一种称为“相干像素”的设计方法55可以实现三种输入光参量的组合加密。在该设计方法中,我们将多个亚纳米结构组成一个像素,并考虑其整体相干作用对光的响应,其输出响应是入射光的角度、波长以及偏振的函数。通过改变纳米结构的位置和旋转角度,可以精确调控不同光参量组合下的光响应,实现多幅纳米打印图像的复用和切换。如图3(c)所示,当入射角度、波长和偏振组合时,可以产生三幅不同的中文汉字图像。显然这一设计理念容易推广到更多图像变化的情形中。

3 单一输出端光学加密

在这一节,我们讨论单一的输出端光学加密,即在输入端光维度保持恒定不变,而在输出端通过改变光的参量来实现图像加密与读取。在输出端,由于信号的振幅和相位信息总是以探测的强度空间分布形式体现的,因此振幅、相位和空间坐标无法作为一个维度进行调控加密。对于波长维度,其在线性光学系统的输入和输出端必然相同,因此该维度只在输入端考虑。据此,在输出端,我们从偏振、观测角度及衍射距离这三个维度探讨光学加密[图4(a)]。同样,在输出端,我们关注的光学加密仍然是通过改变这三个维度中的一个或多个来实现多个图像信号的加密。

图 4. 单一输出端超构表面光学信息加密。(a)信息隐藏在特定的单个线偏振光中60;(b)两幅图像信息隐藏在正交偏振态中61;(c)两幅图像信息隐藏在非正交线偏振态中62;(d)基于大尺寸光栅像素结构的多观测角度图像加密65;(e)基于超构表面结构的大规模观测角度复用的光学加密66;(f)衍射距离维度光学加密67;(g)立体琼斯矩阵全息术68

Fig. 4. Metasurface-based optical information encryption with pure single output. (a) Information hidden in specific single linearly polarized light[60]; (b) two images hidden in orthogonal polarization states[61]; (c) two images hidden in non-orthogonal linearly polarized states[62]; (d) optical encryption of multiple images with different observation angles based on large-scale grating pixel structures[65]; (e) optical encryption with large-scale observation angle multiplexing based on metasurface[66]; (f) optical encryption with diffraction distance dimension[67]; (g) stereoscopic Jones matrix holography [68]

下载图片 查看所有图片

在探测端,通过选取不同偏振态的输出可以得到不同的图像信号,从而将特定信号加密到特定偏振态中。通常选取的偏振态为线偏振态,其偏振角度可作为一个自由度提供加密维度。根据Malus定律,当强度为I0 的线性偏振光通过一个线性偏振片时,透射光强可表示为I=I0 cos²θ,其中θ是入射线偏光的偏振方向与偏振片的主轴之间的夹角。基于此,Yue等60设计了一种超构表面结构,将具有256级灰度的图像编码为具有空间变化的偏振态分布。由于输出端的强度分布均匀,不使用任何偏振器时将看不到任何信息。只有利用一个合适角度的偏振片才能获得加密信息[图4(a)]。然而,上述方案并没有实现不同偏振态下的多图像加密。本课题组基于相干像素设计,实现了任意振幅、相位和偏振态的光场,其可分解为两个具有任意复振幅的任意正交偏振态。因此在输出端,通过选择不同的正交偏振态,可以实现不同图像的解密61,如图4(b)所示。我们提出的这一方案仍然要求两个偏振态正交。基于复合单元的设计,Deng等62在任意非正交偏振下实现了两幅灰度图像的加密和隐藏[图4(c)]。

除此之外,Zhao等63和Song等64也先后通过将偏振与衍射级(观测角度)相结合,设计并实现了不同衍射级具有不同偏振态分布的超构表面光学全息加密。从设计角度来看,这些不同衍射级的图像位于同一平面,可看成一张视角很大的全息图,这可由亚波长尺度像素单元结构构造而成。另一方面,从衍射角度考虑,由于存在多个衍射级数,结构单元像素尺寸往往远大于波长。这一大尺寸像素也可看成是由多个亚波长尺度的小像素组合而成的(整体考虑全息图时),因此这两种思路是等价的。

与全息图像可以在空间上分开不同,平面打印图像在不同观测角度下的位置重合。当在不同观测角下观测一个平面图像时,相当于进行了角谱滤波,这会导致图像的改变,从而可实现光学加密。一种方案是通过设计多套结构分别将光衍射到不同角度,从而产生不同的图像观测效果。例如,在一个大像素中设计3×3共9个子像素[图4(d)],每个子像素都是一个光栅结构,能够将入射光衍射到9个不同的角度65。通过在结构后方入射特定分布的光场分布,可以在不同视角下观测到不同图像的变化。然而,这种方法设计的像素尺寸大,分辨率低。例如,每个子像素光栅为了将光衍射到特定角度,尺寸达到50 μm,因此可以通过裸眼观测图像变化。通过亚波长尺度的超构表面结构可实现分辨率增大。将不同角度的加密图像的复振幅相干叠加66,得到最终超构表面的复振幅,可以实现25个角度通道下的图像加密[图4(e)]。显然,为了实现更大角度的图像加密,超构表面结构的单元像素尺寸需要更小。

在输出端,光在传播的过程中会发生衍射,从而在不同的距离处具有不同的光响应,因此衍射距离也可以作为一个维度进行加密。如图4(f)所示,基于GS迭代算法和超构表面结构的几何相位,2016年,Huang等67通过在距离样品50、100、150 μm的三个独立平面上重建三个全息图像,实现了衍射距离维度的光学加密。进一步,基于超构表面单元对偏振调控的能力,将衍射距离与偏振维度结合,可实现输出端多维光学加密68-69。例如,Zhao等68基于一种“立体琼斯矩阵”的全息术方法,将传统的迭代算法与琼斯矩阵方法相结合,实现了光场纵向的偏振、振幅和相位的连续变化。这一方法使得单层结构沿纵向具有任意偏振响应,研究者演示了在纵向上具有连续偏振变换的空心螺旋图案[图4(g)]。

4 输入-输出端联合光学加密

相比于单一的输入端和输出端加密,将两者结合起来实现光学加密显然具有更高的安全性。在恢复原始图像信号的过程中,必须在输入密钥和输出密钥都正确的情况下,输出端的光场才能得到解密,这大大增加了破解的难度。由于输入和输出两端都具有多种维度,两两组合会有多种情形,因此在以下分析中我们从输入端口的维度进行分类探讨。

4.1 偏振维度输入

几何相位70-73依赖于超构表面结构单元的转角,这提供了一个非常便捷的自由度来调控相位,并被广泛用于超构表面结构的构建。为了产生几何相位,需要在输入端入射圆偏振光,同时在输出端探测相反旋度的圆偏振态,因此这是一个典型的偏振输入-偏振输出联合的光学加密范例。然而,几何相位在相反圆偏振态下互为相反,导致不同圆偏振态下的光响应相互共轭,无法独立成像。

为了在输入端改变圆偏振态以输出独立图像,最直接的方法是设计两套结构,分别在左右旋光下产生独立的全息图,然后交错放置,形成新的结构。如图5(a)所示,在图像信息的右边,一套结构能够在左旋光下生成“蜜蜂”图案,另一套结构能够在右旋光下生成“花”图案74,结合一起后,即可实现偏振输入、偏振输出的图像加密功能。然而,这种方法无法规避几何相位在相反圆偏振态下的关联性,所以在整个图像的左端仍会出现共轭图像。为了实现更多偏振通道的加密,可以将入射的两种圆偏振态的相位差作为一个新的自由度进行光学加密38。基于同样的空间复用设计方案,首先在左旋光和右旋光下得到了两幅独立的全息图,再对两幅全息图之间的相位差进行编码,两幅全息图像重叠区域形成了矢量偏振,并附加了加密信息。通过连续改变入射元偏振态的相位差,可以调制重叠区域中的图像,从而在特定的相位差下解密出图像信息[图5(b)]。

图 5. 偏振维度输入-偏振维度输出的超构表面光学信息加密。(a)基于几何相位和结构空间复用的全息加密74;(b)将入射光两个圆偏振态之间的相位差作为额外自由度,实现三通道的全息加密38;(c)基于几何相位和传输相位,实现任意正交偏振态下的独立相位控制39;(d)基于各向异性单元结构线偏振态下的连续和简并输出,实现灰度图像和二元图像的光学加密41;(e)基于不同入射和出射线偏振态角度下形成的第三个杂化通道图像实现光学加密76

Fig. 5. Metasurface-based optical information encryption with polarization dimension at both input and output terminals. (a) Holographic encryption based on geometric phase and spatial multiplexing[74]; (b) three-channel holographic encryption realized by introducing phase difference between two circular polarization states of incident light as additional degree of freedom[38]; (c) independent phase control achieved under arbitrary orthogonal polarization states based on geometric and propagation phases[39]; (d) optical encryption of grayscale and binary images based on continuous and degenerate output under linear polarization states of anisotropic unit structure[41]; (e) optical encryption based on third hybrid channel image formed under different incident and outgoing linear polarization angles[76]

下载图片 查看所有图片

上述方案仅仅利用了几何相位,因此只能针对特殊的左右旋光入射偏振态,如何推广到任意的正交偏振态是一个难题。2017年,哈佛大学Capasso课题组提出了几何相位与传输相位相结合的方案39,此方案需要考虑像素中纳米棒的长宽和转角三个自由度。研究者实现了对任意正交偏振态的独立相位调控,并验证了独立全息图像[图5(c)]。此时,在输出端,其偏振与入射端共轭,即偏振态旋转方向相反。

如果考虑线偏振态输入和线偏振态输出,对于各向异性单元的超构表面结构,其输出强度同时依赖输入和输出线偏振态的方向,因此可以通过调控输入和输出的偏振方向来实现光学加密40-4175。容易证明,对于一个转角为θ、长轴和短轴的透射系数分别为ΑΒ的结构,其透射强度41

I=I0A-B2cos(2θ-α2-α1)+A+B2cos(α2-α1)2

式中:α1α2分别为起偏器和检偏器的旋转角度,表征入射和探测线偏振态的方向。当α2=-α1=π/4时,可以利用结构的转角实现连续的灰度图像。此时旋转结构π/8角度,并保持这一角度不变,改变输入和输出的线偏振态方向,单元结构转角可以在保持前一个灰度图像不变的情况下,实现强或弱的二元图像41,即实现了线偏振输入输出的图像加密[图5(d)]。此时,输入和输出的两种偏振态不需要正交。

在上述线偏振态双通道加密的基础上,改变入射和出射的线偏振方向(与前两个通道完全不同),可形成第三个杂化通道图像,如图5(e)所示。基于单像素成像原理,将第三个杂化通道图像作为解密密钥76,借助矩阵的变换操作,对多个目标图像进行编码和检索。通过一定的矩阵运算,前两个通道的图像可以生成一系列图案,利用这些图案对目标图像进行编码和解码。单个超构表面可在单像素成像加密中重复使用,增强加密安全性。

上述图像加密中,在输出端只考虑了偏振的单一通道,通过引入更多维度,例如衍射距离、观测角度等,可以丰富光学加密的维度,提升加密的安全性。

结构平面和全息平面与超构表面的距离是不同的,为了引入衍射距离的维度,通常在结构平面和全息平面上同时产生图像信息。平面打印图像和全息图像通常分别通过振幅和相位调控来实现。平面图像是点对点成像的,因此对光源的相干度要求不高,从而可以在非相干光源(例如白光)下成像。而全息图像则是整个结构的相干效果,因此要求光源具有良好的相干性,一般仅在激光条件下实现。2021年,Liu等77在Capasso课题组工作39的基础上,设计了包含2个纳米结构的像素单元,证明了对于两个纯相位因子,其相干叠加后可以得到任意的振幅和相位。因此,这样的结构设计可以实现任意正交偏振态下振幅和相位的独立调控。对于振幅来说,利用其分布可以在结构平面处得到纳米打印图像,而利用相位分布则可以在远场平面处实现全息图像[图6(a)]。同时,透射光的偏振与入射共轭在输出端引入了偏振维度,与衍射距离维度结合,可实现输出端的多维光场加密。

图 6. 偏振维度输入-多重维度输出的超构表面光学信息加密。(a)双通道左右旋偏振加密77;(b)基于平面结构最高六自由度琼斯矩阵的三通道线偏振加密78;(c)基于双层结构最高八自由度琼斯矩阵的四通道线偏振加密79;(d)输出端结合偏振、衍射距离、观测角度三种维度的全息图像信息加密80

Fig. 6. Metasurface-based optical information encryption with polarization dimension at input terminal and multi-dimension at output terminal. (a) Two-channel encryption with left and right rotation polarization[77]; (b) three-channel linear polarization encryption based on highest six degree-of-freedom Jones matrix of planar structure[78]; (c) four-channel linear polarization encryption based on highest eight degree-of-freedom Jones matrix of double-layer structure[79]; (d) optical information encryption of holographic images combining with three dimensions of polarization, diffraction distance, and observation angle at output terminal[80]

下载图片 查看所有图片

我们课题组从超构表面调控光场琼斯矩阵的角度出发,证明了这样的琼斯矩阵必须满足6个自由度78,即xxxyyy三个分量的振幅和相位须独立任意可调。我们通过设计包含4个纳米结构的像素单元78,实现了具有6个自由度的琼斯矩阵构造,这也是平面结构最大上限自由度的光场调控。基于此演示了在不同衍射距离处形成纳米打印和全息图像的三通道线偏振加密[图6(b)]。由于平面结构的对称性,琼斯矩阵的非对角项必然相同,因此最高只有6个自由度。为了实现其本征的最高8个自由度,须考虑多层结构设计。2022年,我们构造了双层的超构表面结构79,每层结构的琼斯矩阵包含6个自由度,并基于梯度下降算法,实现了这一最高8个自由度的目标。实验上,我们在4个偏振通道下演示了独立的纳米打印和全息图像,如图6(c)所示。可以看到,这时xyyx偏振通道下的振幅和相位可以独立调控。

在输出端,将偏振、衍射距离、观测角度三个维度结合的方案如图6(d)所示。基于几何相位,研究者设计了不同衍射距离的全息图像。附加一个角谱的倾斜相位因子后,全息图像从不同角度出射,从而偏振、衍射距离和观测角度三种输出端维度得到复用,并被集成到单个超构表面结构上80。该方案最大化利用了输出端的光维度,增加了信息的安全性。

4.2 波长维度输入

在单色纳米打印和全息图像集成的基础上81,将单色纳米打印扩展到全彩图像,可以使图像颜色更丰富,这可以看成是波长维度输入、衍射距离维度输出的双端口图像加密。为了实现波长维度的独立调控,常见的方案是采用多套结构的复合交错设计。如图7(a)82所示,制备不同高度的纳米结构作为滤色片,从而使红绿蓝波长选择性通过,同时控制相位,实现远场彩色全息和近场平面彩色图像的集成。图7(b)83给出了类似的方案,只是利用不同波长下不同尺寸纳米块具有不同共振衍射的机制,同时基于几何相位进行相位调控,实现类似的效果。然而,这两种方案都无法对振幅进行调控,因此显示出的彩色打印图像无法实现亮度调控,仅仅只是不同颜色混合的彩色图案。

图 7. 波长维度输入-其他维度输出的超构表面光学信息加密。(a)基于纳米结构滤色片机制82;(b)基于不同波长下不同尺寸纳米块具有不同共振衍射的机制83;(c)基于三基色混合实现任意亮度、饱和度和色度的全彩颜色显示84;(d)三波长通道下的线偏振输出随空间变化的全息图像光学加密85;(e)双波长通道下不同线偏振输出纳米打印图像的光学加密86

Fig. 7. Metasurface-based optical information encryption with wavelength dimension at input terminal and other dimensions at output terminal. (a) Based on nanostructure color filter mechanism[82]; (b) based on mechanism that nanostructures with different sizes have different resonance diffraction under different wavelengths[83]; (c) full-color display with arbitrary brightness, saturation, and hue based on three primary colors mixing theory[84]; (d) three-wavelength channel holographic optical encryption with linearly polarized output varying in space[85]; (e) two-wavelength channel optical encryption of nanoprinting images with different linearly polarized output[86]

下载图片 查看所有图片

本课题组根据颜色的三基色混合理论,即任意一个具有强度、色度、饱和度的颜色都可由不同强度的三基色混合而成。通过相干像素的设计,在一个像素中设计两个纳米结构,利用其几何相位的干涉可以实现振幅和相位的独立调控,并将针对三基色的三种共振尺寸集成在一个大像素里[图7(c)],实现对三基色振幅和相位的独立调控。由于三基色的强度可以调控,其彩色打印图像可以实现强度、色度、饱和度的三维调控84

上述衍射距离维度加密虽然利用了几何相位,但输出端的偏振恒定,没有变化,不能作为一个加密维度。将偏振方向不同的线偏振光看成是具有不同相位的左右旋光叠加,可利用几何相位和线偏振态输入实现该设计。如图7(d)所示,通过结合多焦点透镜设计和多波长复用设计,可以实现三基色输入下不同焦点位置处的显示偏振随空间变化的三维偏振结85。可以看到,通过选择性输出不同线偏振态,可以在不同波长下得到不同的信息,实现波长输入、偏振态输出的光学加密。另外,双波长输入、不同偏振方向输出的加密方案如图7(e)所示86,其可在不同波长和偏振方向探测下显示四幅不同的加密图像。这种设计利用了两种低串扰的纳米结构空间复用以及不同偏振态探测下的强度简并性,其基本原理如式(1)所示。

4.3 入射角度维度输入

入射角度这一维度往往容易被人忽略,因为大部分结构对角度不敏感。精心设计结构,使其在不同入射角下具体不同光响应,同时结合上述打印与全息图像的集成,实现入射角度维度输入-衍射距离维度输出的联合光学加密。Wan等87-88基于金属-电介质-金属三明治反射层结构,通过构建不同尺寸下的振幅和相位调控数据库,实现了四通道的多路复用,即在两个不同入射角度下分别实现了纳米打印和全息图像(图8)。

图 8. 入射角度维度输入-衍射距离维度输出的超构表面光学信息加密87-88。(a)通过建立角度编码响应的结构数据库实现角度多路复用加密;(b)利用角度照明改变表面等离子体共振和法布里-珀罗纳米腔共振,针对不同的入射角进行编码加密

Fig. 8. Metasurface-based optical information encryption with incident-angle dimension at input terminal and diffraction-distance dimension at output terminal[87-88]. (a) Angle-multiplexed encryption by building structured database of angle-encoded responses; (b) encoding encryption for different incident angles by using angular illumination to change surface plasma resonance and Fabry-Perot nanocavity resonance

下载图片 查看所有图片

4.4 多维光参量输入

在输入端,不同维度之间的组合导致多种多样的光学加密方案,同时再结合输出端的维度变化,其带来的可能变化更是丰富。图9概括了其中一些在多维输入下的光学加密方案。

图 9. 多维度输入-其他维度输出的超构表面光学信息加密。(a)入射角度和偏振双维度输入、偏振维度输出的光学信息加密89;(b)基于结构空间复用设计和圆偏振态的光学加密90;(c)基于单个纳米结构像素构造非复用基本单元下圆偏振态的光学加密52;(d)基于神经网络实现线偏振态的光学加密91;(e)涡旋光(相位+空间)和偏振三维度输入、线偏振态维度输出的光学加密92;(f)涡旋光(相位+空间)和偏振三维度输入、衍射距离维度输出的光学加密46

Fig. 9. Metasurface-based optical information encryption with multi-dimension at input terminal and other dimensions at output terminal. (a) Optical information encryption with polarization dimension at output terminal and dual dimensions of incident angle and polarization at input terminal[89]; (b) optical encryption based on structural spatial multiplexing design and circular polarization state[90]; (c) optical encryption of circular polarization state under non-multiplexing basic unit constructed based on single nanostructured pixel[52]; (d) optical encryption of linear polarization state based on neural network[91]. (e) optical encryption with three dimensions of vortex light (phase and spatial) and polarization at input terminal and linear polarization state dimension at output terminal[92]; (f) optical encryption with three dimensions of vortex light (phase and spatial) and polarization at input terminal and diffraction distance dimension at output terminal[46]

下载图片 查看所有图片

在输入端,入射角度与偏振组合加密的一种方案如图9(a)所示,基于两个纯相位因子叠加可实现任意振幅和相位的原理,并考虑几何相位的共轭性,实现了任意振幅、相位和偏振态输出。入射线偏振态方向的改变会带来左右旋相位差的自由度,从而可以在不同入射角度和不同偏振态下,通过输出端的偏振选择实现不同的图像信息加密89

对于偏振,其有2个自由度,结合波长的维度(N),可得到共2N个通道。图9(b)给出了左右旋偏振以及红绿蓝三基色波长下的多维度加密示意图90,共6个通道。这6个入射通道有两种状态,即入射或非入射,因此共存在多达26-1=63幅全息图。然而,该结构设计仍然采用了空间复用技术,存在效率低、衍射视角小等问题。Jin等52提出了一种多波长的Gerchberg-Saxton算法,无须空间复用,基于单个结构的像素即可实现63种全息图生成[图9(c)]。上述两种方案都基于几何相位,因此入射偏振局限于圆偏振态。近日,Ma等91基于深度学习网络,构建了超构表面结构单元的结构参数与目标之间的关系,避免了在结构设计中使用空间复用和几何相位,从而可以在线偏振态下高效率工作。当入射频率为350 THz和400 THz时,在x偏振和y偏振输入下,他们的设计实现了输出端不同衍射距离处全息成像的功能[图9(d)]。

如前所述,涡旋光是一种多维输入光场,包含了相位和空间坐标变化的维度。在此基础上,在输入和输出端同时考虑偏振维度进行光学加密的方案如图9(e)所示92。该方案基于电介质的双折射单元结构。在xx偏振通道,当输入拓扑荷数为40的涡旋光时,生成一个“NATURE”字符的全息图;将偏振切换到yy通道,当输入涡旋光的拓扑荷数为20时,生成一个完全不同的字符为“SCIENCE”的全息图;而当偏振切换为xy通道,则会生成一系列涡旋光阵列,且随输入涡旋光的变化而变化。上述方案虽然实现了涡旋光切换的全息图,但通道数仍然有限。Ren等46基于复振幅超构表面,在动量空间中对振幅和相位进行独立调控,可实现多达200个独立轨道角动量通道的全息图。在输出端,通过与衍射距离维度结合,能够在两个不同衍射距离处生成无透镜的动态全息视频[图9(f)]。

5 总结与展望

近年来,随着超构表面光学领域的蓬勃发展,各种光场调控机理被提出,超构表面对光场调控能力也越来越强大。例如,基于琼斯矩阵,单自由度调控已逐步发展至双自由度、四自由度和平面结构最高的六自由度,并最终实现了自然界结构所能达到的八自由度。这些多自由度光场调控和新机理为提升光学信息加密的复杂度和安全性打下了基础。

另一方面,基于超构表面的光学信息加密仍面临着诸多挑战。首先,目前超构表面的制备仍主要依赖于电子束曝光、离子束刻蚀等加工工艺,导致成本高,无法进行大面积的制备。其次,由于微纳结构的性质,超构表面容易受到损坏,且在光学环境不理想的情况下加密效果会受到影响。第三,由于加工误差和机理的限制,多通道光信息加密不可避免地存在串扰现象,导致加密和读取的误差,影响实际应用的可靠性。此外,为了增加主动调控性,人们将光与其他物理信号如电、化学反应等相结合来实现动态调控。例如,通过引入液晶实现对超构表面器件电调谐的动态调制93-97,利用镁的氢化和脱氢等改变纳米结构的材料属性以实现动态光响应变化98-100。然而这些方案也带来了结构单元尺寸增大、响应速度变慢等问题。因此,研究具有高响应速度、大容量的主动型超构表面器件具有重要意义。

参考文献

[1] Hazer A, Yıldırım R. A review of single and multiple optical image encryption techniques[J]. Journal of Optics, 2021, 23(11): 113501.

[2] Liu S, Guo C L, Sheridan J T. A review of optical image encryption techniques[J]. Optics & Laser Technology, 2014, 57: 327-342.

[3] Unnikrishnan G, Joseph J, Singh K. Optical encryption by double-random phase encoding in the fractional Fourier domain[J]. Optics Letters, 2000, 25(12): 887-889.

[4] Peng X, Zhang P, Wei H Z, et al. Known-plaintext attack on optical encryption based on double random phase keys[J]. Optics Letters, 2006, 31(8): 1044-1046.

[5] Javidi B, Carnicer A, Yamaguchi M, et al. Roadmap on optical security[J]. Journal of Optics, 2016, 18(8): 083001.

[6] Koppa P. Phase-to-amplitude data page conversion for holographic storage and optical encryption[J]. Applied Optics, 2007, 46(17): 3561-3571.

[7] Heanue J F, Bashaw M C, Hesselink L. Encrypted holographic data storage based on orthogonal-phase-code multiplexing[J]. Applied Optics, 1995, 34(26): 6012-6015.

[8] Takai N, Mifune Y. Digital watermarking by a holographic technique[J]. Applied Optics, 2002, 41(5): 865-873.

[9] Jiao S M, Zhou C Y, Shi Y S, et al. Review on optical image hiding and watermarking techniques[J]. Optics & Laser Technology, 2019, 109: 370-380.

[10] Sun L J, Zhuang S L. Watermarking by encrypted Fourier holography[J]. Optical Engineering, 2007, 46(8): 085801.

[11] Rajput S K, Nishchal N K. An optical encryption and authentication scheme using asymmetric keys[J]. Journal of the Optical Society of America A, 2014, 31(6): 1233-1238.

[12] Chen J X, Bao N, Zhang L Y, et al. Optical information authentication using optical encryption and sparsity constraint[J]. Optics and Lasers in Engineering, 2018, 107: 352-363.

[13] Pérez-Cabré E, Cho M, Javidi B. Information authentication using photon-counting double-random-phase encrypted images[J]. Optics Letters, 2010, 36(1): 22-24.

[14] Wang W Q, Wang X G, Xu B J, et al. Optical image encryption and authentication using phase-only computer-generated hologram[J]. Optics and Lasers in Engineering, 2021, 146: 106722.

[15] Weng D D, Zhu N, Wang Y T, et al. Experimental verification of optical image encryption based on interference[J]. Optics Communications, 2011, 284(10/11): 2485-2487.

[16] Unnikrishnan G, Pohit M, Singh K. A polarization encoded optical encryption system using ferroelectric spatial light modulator[J]. Optics Communications, 2000, 185(1/2/3): 25-31.

[17] Clemente P, Durán V, Torres-Company V, et al. Optical encryption based on computational ghost imaging[J]. Optics Letters, 2010, 35(14): 2391-2393.

[18] Yu N F, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2): 139-150.

[19] Bao Y J, Ni J C, Qiu C W. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams[J]. Advanced Materials, 2020, 32(6): 1905659.

[20] Kildishev A, Boltasseva A, Shalaev V. Planar photonics with metasurfaces[J]. Science, 2013, 339(6125): 1232009.

[21] Bao Y J, Weng Q, Li B J. Conversion between arbitrary amplitude, phase, and polarization with minimal degrees of freedom of metasurface[J]. Laser & Photonics Reviews, 2022, 16(2): 2100280.

[22] Lin D M, Fan P Y, Hasman E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298-302.

[23] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.

[24] Bao Y J, Lin Q L, Su R B, et al. On-demand spin-state manipulation of single-photon emission from quantum dot integrated with metasurface[J]. Science Advances, 2020, 6(31): eaba8761.

[25] Bukhari S S, Vardaxoglou J, Whittow W. A metasurfaces review: definitions and applications[J]. Applied Sciences, 2019, 9(13): 2727.

[26] Chen H T, Taylor A J, Yu N F. A review of metasurfaces: physics and applications[J]. Reports on Progress in Physics, 2016, 79(7): 076401.

[27] Bao Y J, Yan J H, Yang X G, et al. Point-source geometric metasurface holography[J]. Nano Letters, 2021, 21(5): 2332-2338.

[28] Ding F, Pors A, Bozhevolnyi S I. Gradient metasurfaces: a review of fundamentals and applications[J]. Reports on Progress in Physics, 2018, 81(2): 026401.

[29] Aieta F, Kats M A, Genevet P, et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 2015, 347(6228): 1342-1345.

[30] High A A, Devlin R C, Dibos A, et al. Visible-frequency hyperbolic metasurface[J]. Nature, 2015, 522(7555): 192-196.

[31] Huang L L, Chen X Z, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4: 2808.

[32] Tittl A, Leitis A, Liu M K, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 2018, 360(6393): 1105-1109.

[33] Wang S M, Wu P C, Su V C, et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 2017, 8: 187.

[34] Yue F Y, Wen D D, Xin J T, et al. Vector vortex beam generation with a single plasmonic metasurface[J]. ACS Photonics, 2016, 3(9): 1558-1563.

[35] Zheng G X, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312.

[36] Chen Y, Gao J, Yang X D. Chiral grayscale imaging with plasmonic metasurfaces of stepped nanoapertures[J]. Advanced Optical Materials, 2019, 7(6): 1801467.

[37] Xiong B, Liu Y, Xu Y H, et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise[J]. Science, 2023, 379(6629): 294-299.

[38] Wan W P, Yang W H, Feng H, et al. Multiplexing vectorial holographic images with arbitrary metaholograms[J]. Advanced Optical Materials, 2021, 9(20): 2100626.

[39] Balthasar Mueller J, Rubin N A, Devlin R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901.

[40] Deng J, Li Z L, Li J X, et al. Metasurface-assisted optical encryption carrying camouflaged information[J]. Advanced Optical Materials, 2022, 10(16): 2270064.

[41] Deng J A, Deng L G, Guan Z Q, et al. Multiplexed anticounterfeiting meta-image displays with single-sized nanostructures[J]. Nano Letters, 2020, 20(3): 1830-1838.

[42] Ren H R, Briere G, Fang X Y, et al. Metasurface orbital angular momentum holography[J]. Nature Communications, 2019, 10: 2986.

[43] Fang X Y, Ren H R, Gu M. Orbital angular momentum holography for high-security encryption[J]. Nature Photonics, 2020, 14(2): 102-108.

[44] Liu S L, Wang X H, Ni J C, et al. Optical encryption in the photonic orbital angular momentum dimension via direct-laser-writing 3D chiral metahelices[J]. Nano Letters, 2023, 23(6): 2304-2311.

[45] Yang H, He P, Ou K, et al. Angular momentum holography via a minimalist metasurface for optical nested encryption[J]. Light: Science & Applications, 2023, 12: 79.

[46] Ren H R, Fang X Y, Jang J, et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space[J]. Nature Nanotechnology, 2020, 15(11): 948-955.

[47] Tang Y T, Intaravanne Y, Deng J H, et al. Nonlinear vectorial metasurface for optical encryption[J]. Physical Review Applied, 2019, 12(2): 024028.

[48] Ye W M, Zeuner F, Li X, et al. Spin and wavelength multiplexed nonlinear metasurface holography[J]. Nature Communications, 2016, 7: 11930.

[49] Walter F, Li G X, Meier C, et al. Ultrathin nonlinear metasurface for optical image encoding[J]. Nano Letters, 2017, 17(5): 3171-3175.

[50] Wang B, Dong F L, Li Q T, et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms[J]. Nano Letters, 2016, 16(8): 5235-5240.

[51] Li Z F, Premaratne M, Zhu W R. Advanced encryption method realized by secret shared phase encoding scheme using a multi-wavelength metasurface[J]. Nanophotonics, 2020, 9(11): 3687-3696.

[52] Jin L, Dong Z G, Mei S T, et al. Noninterleaved metasurface for (26-1) spin- and wavelength-encoded holograms[J]. Nano Letters, 2018, 18(12): 8016-8024.

[53] Kamali S M, Arbabi E, Arbabi A, et al. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles[J]. Physical Review X, 2017, 7(4): 041056.

[54] Jang J, Lee G Y, Sung J, et al. Independent multichannel wavefront modulation for angle multiplexed meta-holograms[J]. Advanced Optical Materials, 2021, 9(17): 2100678.

[55] Bao Y J, Yu Y, Xu H F, et al. Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching and encoding[J]. Advanced Functional Materials, 2018, 28(51): 1805306.

[56] Tang J A, Li Z, Wan S A, et al. Angular multiplexing nanoprinting with independent amplitude encryption based on visible-frequency metasurfaces[J]. ACS Applied Materials & Interfaces, 2021, 13(32): 38623-38628.

[57] Chen W T, Yang K Y, Wang C M, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images[J]. Nano Letters, 2014, 14(1): 225-230.

[58] Goh X M, Zheng Y H, Tan S J, et al. Three-dimensional plasmonic stereoscopic prints in full colour[J]. Nature Communications, 2014, 5: 5361.

[59] Xu P, Xiao Y F, Huang H X, et al. Dual-wavelength hologram of high transmittance metasurface[J]. Optics Express, 2023, 31(5): 8110-8119.

[60] Yue F Y, Zhang C M, Zang X F, et al. High-resolution grayscale image hidden in a laser beam[J]. Light: Science & Applications, 2018, 7(1): 17129.

[61] BaoY J, YuY, SunS, et al. Dielectric metasurface for independent complex-amplitude control of arbitrary two orthogonal states of polarization[EB/OL]. (2021-05-28)[2023-02-05]. https:∥arxiv.org/abs/2105.13640.

[62] Deng Z L, Tu Q G, Wang Y J, et al. Vectorial compound metapixels for arbitrary nonorthogonal polarization steganography[J]. Advanced Materials, 2021, 33(43): 2103472.

[63] Zhao R Z, Li X, Geng G Z, et al. Encoding arbitrary phase profiles to 2D diffraction orders with controllable polarization states[J]. Nanophotonics, 2023, 12(1): 155-163.

[64] Song Q H, Baroni A, Sawant R, et al. Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces[J]. Nature Communications, 2020, 11: 2651.

[65] Hua J Y, Hua E K, Zhou F B, et al. Foveated glasses-free 3D display with ultrawide field of view via a large-scale 2D-metagrating complex[J]. Light: Science & Applications, 2021, 10: 213.

[66] Wei Y X, Hu T, Feng X, et al. Phase-only holographic assisted planar printing for massively multiplexed optical display and encryption[J]. Advanced Optical Materials, 2022, 10(22): 2201403.

[67] Huang K, Dong Z G, Mei S T, et al. Silicon multi-meta-holograms for the broadband visible light[J]. Laser & Photonics Reviews, 2016, 10(3): 500-509.

[68] ZhaoR Z, WeiQ S, LiY Z, et al. Stereo Jones matrix holography with longitudinal polarization transformation[J/OL]. Laser & Photonics Reviews: 1-9[2023-01-02]. https:∥onlinelibrary.wiley.com/doi/epdf/10.1002/lpor.202200982.

[69] Yang H, Jiang Y T, Hu Y Q, et al. Noninterleaved metasurface for full-polarization three-dimensional vectorial holography[J]. Laser & Photonics Reviews, 2022, 16(11): 2200351.

[70] Bliokh K Y. Geometrodynamics of polarized light: berry phase and spin Hall effect in a gradient-index medium[J]. Journal of Optics A: Pure and Applied Optics, 2009, 11(9): 094009.

[71] Nakamura K. Pancharatnam-Berry phase for polarized light[J]. Journal of the Physical Society of Japan, 2013, 82(6): 063701.

[72] Hannay J H. The Berry phase for spin in the Majorana representation[J]. Journal of Physics A: Mathematical and General, 1998, 31(2): L53-L59.

[73] Hannay J H. The Majorana representation of polarization, and the Berry phase of light[J]. Journal of Modern Optics, 1998, 45(5): 1001-1008.

[74] Wen D D, Yue F Y, Li G X, et al. Helicity multiplexed broadband metasurface holograms[J]. Nature Communications, 2015, 6: 8241.

[75] Hu Y Q, Li L, Wang Y J, et al. Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface[J]. Nano Letters, 2020, 20(2): 994-1002.

[76] Zheng P X, Dai Q, Li Z L, et al. Metasurface-based key for computational imaging encryption[J]. Science Advances, 2021, 7(21): eabg0363.

[77] Liu M Z, Zhu W Q, Huo P C, et al. Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states[J]. Light: Science & Applications, 2021, 10: 107.

[78] Bao Y J, Wen L, Chen Q, et al. Toward the capacity limit of 2D planar Jones matrix with a single-layer metasurface[J]. Science Advances, 2021, 7(25): eabh0365.

[79] Bao Y J, Nan F, Yan J H, et al. Observation of full-parameter Jones matrix in bilayer metasurface[J]. Nature Communications, 2022, 13: 7550.

[80] Huang L L, Mühlenbernd H, Li X W, et al. Broadband hybrid holographic multiplexing with geometric metasurfaces[J]. Advanced Materials, 2015, 27(41): 6444-6449.

[81] Zhou Z, Wang Y Q, Chen C, et al. Multifold integration of printed and holographic meta-image displays enabled by dual-degeneracy[J]. Small, 2022, 18(13): 2106148.

[82] Lim K T P, Liu H L, Liu Y J, et al. Holographic colour prints for enhanced optical security by combined phase and amplitude control[J]. Nature Communications, 2019, 10: 25.

[83] Wei Q S, Sain B, Wang Y T, et al. Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurfaces[J]. Nano Letters, 2019, 19(12): 8964-8971.

[84] Bao Y J, Yu Y, Xu H F, et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control[J]. Light: Science & Applications, 2019, 8: 95.

[85] Intaravanne Y, Wang R X, Ahmed H, et al. Color-selective three-dimensional polarization structures[J]. Light: Science & Applications, 2022, 11: 302.

[86] Cao Y E, Tang L L, Li J Q, et al. Four-channel display and encryption by near-field reflection on nanoprinting metasurface[J]. Nanophotonics, 2022, 11(14): 3365-3374.

[87] Wan S, Tang J, Wan C W, et al. Angular-encrypted quad-fold display of nanoprinting and meta-holography for optical information storage[J]. Advanced Optical Materials, 2022, 10(11): 2102820.

[88] Wan S, Wan C W, Dai C J, et al. Angular-multiplexing metasurface: building up independent-encoded amplitude/phase dictionary for angular illumination[J]. Advanced Optical Materials, 2021, 9(22): 2101547.

[89] Wang E L, Niu J B, Liang Y H, et al. Complete control of multichannel, angle-multiplexed, and arbitrary spatially varying polarization fields[J]. Advanced Optical Materials, 2020, 8(6): 1901674.

[90] Dong F L, Feng H, Xu L H, et al. Information encoding with optical dielectric metasurface via independent multichannels[J]. ACS Photonics, 2019, 6(1): 230-237.

[91] Ma W, Xu Y H, Xiong B, et al. Pushing the limits of functionality-multiplexing capability in metasurface design based on statistical machine learning[J]. Advanced Materials, 2022, 34(16): 2110022.

[92] Zhou H Q, Sain B, Wang Y T, et al. Polarization-encrypted orbital angular momentum multiplexed metasurface holography[J]. ACS Nano, 2020, 14(5): 5553-5559.

[93] Franklin D, Chen Y, Vazquez-Guardado A, et al. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces[J]. Nature Communications, 2015, 6: 7337.

[94] Kim I, Jang J, Kim G, et al. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform[J]. Nature Communications, 2021, 12: 3614.

[95] Li L L, Cui T J, Ji W, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8: 197.

[96] Olson J, Manjavacas A, Basu T, et al. High chromaticity aluminum plasmonic pixels for active liquid crystal displays[J]. ACS Nano, 2016, 10(1): 1108-1117.

[97] Yu P, Li J X, Liu N. Electrically tunable optical metasurfaces for dynamic polarization conversion[J]. Nano Letters, 2021, 21(15): 6690-6695.

[98] Chen Y Q, Duan X Y, Matuschek M, et al. Dynamic color displays using stepwise cavity resonators[J]. Nano Letters, 2017, 17(9): 5555-5560.

[99] Duan X Y, Kamin S, Liu N. Dynamic plasmonic colour display[J]. Nature Communications, 2017, 8: 14606.

[100] Li J X, Chen Y Q, Hu Y Q, et al. Magnesium-based metasurfaces for dual-function switching between dynamic holography and dynamic color display[J]. ACS Nano, 2020, 14(7): 7892-7898.

魏睿, 包燕军. 基于超构表面的多维光信息加密[J]. 中国激光, 2023, 50(18): 1813004. Rui Wei, Yanjun Bao. Metasurface-Based Multidimensional Optical Information Encryption[J]. Chinese Journal of Lasers, 2023, 50(18): 1813004.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!