光学学报, 2019, 39 (6): 0630003, 网络出版: 2019-06-17   

径向偏振光激发氧化石墨烯/金纳米棒复合基底的表面增强拉曼散射性能 下载: 1107次

Surface-Enhanced Raman Scattering Performances of GO/AuNRs Composite Substrates Excited by Radially Polarized Light
杨东 1,2聂仲泉 1,2,*翟爱平 1,2田彦婷 1,2贾宝华 3,**
作者单位
1 太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024
2 太原理工大学物理与光电工程学院, 山西 太原 030024
3 斯威本科技大学科学、工程与技术学院微光子学中心, 墨尔本 3122
摘要
探究径向偏振矢量光与氧化石墨烯/金纳米棒复合结构的相互作用,以提高表面增强拉曼散射性能。基于FDTD Solutions软件,得到氧化石墨烯/单金纳米棒复合基底在径向偏振光激发下的表面增强拉曼散射增强因子达到10 8,比相同条件下线偏振光激发的大6个数量级。这种性能提高的物理机制源于径向偏振光激发金纳米棒的电磁增强与氧化石墨烯产生的本征化学增强。进一步详细讨论了径向偏振光激发下氧化石墨烯厚度、金纳米棒数量和排列方式对表面增强拉曼散射性能的影响。基于径向矢量光场激发多功能基底的表面增强拉曼散射性能调控在生物化学、食品安全与传感检测等领域具有巨大的应用潜力。
Abstract
The interaction between the radially polarized vectorial light and GO/AuNRs composite structures is studied to boost the SERS performance. Based on the simulation of the finite-difference time-domain solutions software, the SERS enhancement factor of the GO/single-AuNR composite substrate illuminated by the radially polarized light is up to 10 8, which is six orders of magnitude greater than that achieved by linearly polarized light under the same conditions. The physical mechanisms for this performance improvement are due to both the electromagnetic enhancement of gold nanorods excited by the radially polarized light and intrinsically chemical enhancement afforded by the GO film. Furthermore, the effects of different GO thicknesses and the number and arrangement of gold nanorods on the properties of SERS with radially polarization illumination are discussed in detail. The performance control of the SERS based on radial-vector light field bestirring the multifunctional substrate has great potential in biochemistry, food safety, and sensor detection.

1 引言

表面增强拉曼散射(SERS)技术[1-2]是一种快速、无损、非接触、高灵敏度的检测手段,近年来受到了广泛关注,如何获得具有超高灵敏度的SERS基底成为当下研究的热点。SERS基底十分复杂,一般从以下两方面对SERS基底进行理论分析:1)电磁增强机制,主要基于金属纳米颗粒的表面等离子体共振;2)化学增强机制,主要基于基底与检测分子之间的电荷转移[3-7]。在SERS增强效应中,电磁增强机制通常比化学增强机制的贡献大,占主导地位,因此,围绕贵金属纳米颗粒的等离子体共振成为SERS基底研究的关键内容[8-10]

Xu等[11]使用飞秒直写技术还原银离子前驱物溶液,制得了银纳米片聚集成的微米花结构,SERS增强因子可达108。该基底SERS性能的提高主要依赖于电磁增强机制的贵金属材料等离子体效应,以及贵金属纳米颗粒之间存在的“热点”使颗粒相互作用产生更强的SERS效应。Ling等[12]研究了石墨烯与拉曼光谱强度的关系。石墨烯电子结构为狄拉克式,且具有较大的比表面积,对于大分子检测物质有较强的吸附能力,在光源激发下,检测分子与石墨烯之间产生电荷转移[13-14],对SERS效应具有一定影响。作为石墨烯家族中重要的一员,氧化石墨烯(GO)因本征的sp2与sp3碳原子的杂化而具有非常独特的物理和化学性能[15-19],在光电检测、传感、通信与集成等方面应用广泛,其中GO能应用于高灵敏SERS检测主要是基于其化学增强机制[20-22]。为了进一步提高SERS性能,研究者将电磁和化学增强机制结合起来。Huang等[23]利用还原氧化石墨烯/银纳米颗粒(rGO/AgNPs)复合基底来检测有机染料结晶紫(CV)。由于rGO-AgNPs复合基底包含rGO,因此会吸附更多的检测分子,使它们之间发生电荷转移,在入射光的激发下,银纳米颗粒之间会产生等离子体共振,从而引起SERS电磁增强。结合两种增强机制的复合基底对CV的浓度检测可以达到10-8mol/L,SERS增强因子为2.3×104。然而,上述研究主要集中在线偏振光激发以及SERS基底材料、结构的设计上,忽略了入射光偏振变化对SERS基底的影响。

近年来,作为矢量光场的最低阶模式,径(角)向偏振光因其独特的轴对称偏振分布与新颖的聚焦性能越来越受到研究人员的关注[24-27]。结合SERS技术,Dou等[28]研究了不同偏振光场条件下激发单个银纳米粒子间隙模式的SERS效应,发现紧聚焦径向偏振光的SERS信号比同条件下线偏振、角向偏振光的SERS信号强得多,并把这种增强机制归因于激发的表面等离子体激元特殊的纵向场分布。Yang等[29]深入研究了紧聚焦的完美径向偏振光激发膜上单个银纳米粒子间隙模式的SERS性能,并发现,当匹配表面等离子体共振角时,表面等离子体激发效率与SERS效应都得到了极大提高。这些研究利用径向偏振光激发金属纳米粒子的电磁增强,有效地提高了SERS信号的强度,为实现高灵敏度的检测与传感提供了新途径。有效地结合电磁增强(例如径向矢量光场激发金属材料)与化学增强(例如石墨烯/GO SERS基底)将进一步灵活地调控与提高SERS的性能,扩展其应用。

高灵敏度的SERS效应可广泛应用于生物、环境、食品安全等领域[30-35]。本文主要探讨入射光偏振(线偏振与径向偏振)对氧化石墨烯/金纳米棒(GO/AuNRs)复合基底SERS性能的影响,利用FDTD Solutions软件从理论上仿真分析径向偏振光激发下GO的厚度、金纳米棒的数量与排列方式,以及多金纳米棒的间距对SERS效应的调控,优化得到GO/AuNRs复合基底的SERS增强因子,从而为设计性能优良的SERS基底提供理论指导。

2 GO/AuNRs复合基底的SERS仿真

在制备高灵敏度SERS基底的过程中,研究者通过改变材料及结构方式设计出了多种类型的基底来增强SERS效应[36-38]。然而,如何获得具有高灵敏度、重复性好的基底仍面临巨大挑战。为了提高SERS基底的灵敏度和分辨率,本课题组设计了一种新的GO/AuNRs复合基底,如图1所示。金纳米棒的化学性质十分稳定,具有贵金属材料优异的光电性能[39-40]。金纳米棒表面粗糙,可以吸附分子,入射光激发后产生等离子体共振得到SERS信号,从而实现物理增强。而GO作为一种新型的二维材料,其表面含有大量的含氧官能团,可以吸附更多的检测分子进行电荷转移,从而获得SERS信号,实现化学增强。此外,GO还具有荧光淬灭效应以及噪声信号较小、稳定性强、分散性高等优点[41],能够有效地增强SERS的灵敏度和可重复性。综上所述,采用GO/AuNRs作为复合基底来实现SERS增强效应是最佳选择。

图 1. GO/AuNRs复合基底的仿真结构

Fig. 1. Simulation structure of GO/AuNRs composite substrate

下载图片 查看所有图片

采用Lumerical公司的FDTD Solutions软件进行仿真[42-43],以厚度为20 nm的SiO2作为基底,不同厚度的GO薄膜位于中间层,金纳米棒附着于GO薄膜的上表面,周围环境充满空气(折射率n=1),并由完美匹配层包络,以减少边界处的物理反射。GO/AuNRs结构的制作工艺如下:首先,采用自组装技术制备GO薄膜;然后基于飞秒激光直写技术,利用光针状飞秒激光光场还原金溶液,在GO薄膜上排布还原得到的金棒阵列。整个结构受到沿Z轴方向传播的波长为785 nm的径向偏振矢量光的激发。这里需要注意,径向偏振光是由涡旋波片调控入射的线偏振光实现的。当光的波长为785 nm时,通过反射和透射方法测得[44]金的复折射率为0.15+4.8i,采用椭偏仪测得GO的复折射率为1.99+0.045i。

3 结果与讨论

3.1 入射光对SERS的影响

目前研究者设计的SERS基底主要采用线偏振光,忽略光源偏振的影响。本研究采用径向偏振光作为光源激发SERS基底。SERS检测中最常用的激发光源是线偏振光,其偏振方向在传播过程中都沿着同一个方向,如图2(a)所示,因此只能沿一个方向对复合基底进行激发。为了提高SERS的增强效应,采用具有轴对称偏振特性的特殊偏振光。作为一种轴对称、非均匀的偏振光场,径向偏振光的空间分布模式为中空环形,电场的振动方向从中心向四周辐射[45-47],图2(b)所示为径向偏振光的偏振分布。

图 2. 光源偏振态方向和XZ平面上复合基底的电场强度平方|E|2分布。(a)线偏振光的偏振方向;(b)径向偏振光的偏振方向;(c) GO/单金纳米棒复合基底在线偏振光激发下的|E|2分布;(d) GO/单金纳米棒复合基底在径向偏振光激发下的|E|2对数分布

Fig. 2. Polarization orientation of light source and the square of electric-field intensity |E|2 distribution of composite substrate in XZ plane. (a) Polarization orientation of linearly polarized light; (b) polarization direction of radially polarized light; (c) the square of electric-field intensity |E|2 distribution of GO/single-AuNR composite substrate excited by linearly polarized light; (d) logarithmic plots of the square of electric-field intensity |E|2 distribution of GO/single-AuNR composite su

下载图片 查看所有图片

在FDTD Solutions软件中,分别采用线偏振光与径向偏振光对氧化石墨烯/单金纳米棒(GO/single-AuNR)复合基底进行激发。通过对比图2(c)~(d)所示的|E|2可以发现,径向偏振光激发下的|E|2=104 W/m2,比相同条件下线偏振光激发下的|E|2大3个数量级,这主要归因于两种机制:1)径向偏振光激发金纳米棒沿各个方向产生表面等离子共振,而对于线偏振光激发的金纳米棒,表面等离子体只沿偏振方向产生共振,因此,采用径向偏振光作为激发源可以产生电磁增强;2)GO薄膜富含含氧官能团,而且其片层有丰富的π键,对检测分子有富集作用,能极大地促进表面电荷转移,实现化学增强,提高检测的重复性和灵敏度,同时荧光淬灭效应使SERS信号更纯净[48-49]。电磁增强与化学增强相结合能有效提高电场强度。根据SERS增强机理,电场强度直接决定了SERS性能的高低,电场强度越大,SERS效应越好。因此,采用径向偏振光激发GO/单金纳米棒复合基底的SERS性能更好。

此外,金纳米棒的长径比对SERS效应也有一定影响[50],本研究采用785 nm的径向偏振光来激发长度为114 nm且直径分别为57,45,38,32,28,26,25,22 nm的金纳米棒,|E|2的变化如图3所示。由图3可知,长径比为4.3的金纳米棒的|E|2最大,SERS效应最好,说明在785 nm激发光源下,长径比为4.3的金纳米棒可以产生最强的等离子体共振。因此,选择长径比为4.3(长为114 nm,直径为26 nm)的金纳米棒进行仿真。

图 3. XZ平面上|E|2随金纳米棒长径比的变化

Fig. 3. Variation in |E|2 with aspect ratio of AuNR in XZ plane

下载图片 查看所有图片

3.2 GO厚度对SERS的影响

GO作为一种新型材料,表面含有大量的含氧官能团(单层GO的厚度为1 nm[51]),在可见光激发下可显示出具有化学增强机制的SERS效应。本节讨论具有不同厚度的GO薄膜对SERS性能的影响。厚度为0~5 nm的GO的|E|2分布如图4(a)~(f)所示,可知,|E|2分别为8.6×103,1.3×104,1.6×104,3×104,2.5×104,2.7×104 W/m2。由于金纳米棒底端的曲率半径大,且与GO之间存在“热点”,因此GO与金纳米棒之间的|E|2较大。厚度为3 nm的GO复合基底的|E|2几乎是不含GO的复合基底|E|2的4倍,因此,含最优厚度GO的SERS强度比不含GO的SERS强度大1个数量级,并且随着GO薄膜厚度增加,GO/单金纳米棒复合基底的|E|2先增大再减小,变化趋势如图4(g)所示。由图4(g)可知,当GO的厚度为3 nm时,该复合基底的|E|2最大,此时SERS性能最好。原因是随着GO厚度增大,GO表面含氧官能团数量递增,使其更容易与吸附的检测物质实现电荷转移。因此,采用厚度为3 nm的GO薄膜作为最优的SERS基底。

图 4. XZ平面上含不同厚度GO复合基底的|E|2分布。(a) 0 nm; (b) 1 nm; (c) 2 nm; (d) 3 nm; (e) 4 nm; (f) 5 nm; (g)|E|2随GO厚度的变化

Fig. 4. |E|2 distributions of composite substrate with different thicknesses of GO in XZ plane. (a) 0 nm; (b) 1 nm; (c) 2 nm; (d) 3 nm; (e) 4 nm; (f) 5 nm; (g) variation in |E|2 with thickness of GO

下载图片 查看所有图片

3.3 金纳米棒数量、间隙、排列方式对SERS的影响

在实际应用中一般需要采用阵列,因此,仿真不同数量金纳米棒复合基底的|E|2分布。这里讨论在径向偏振光激发下,间隙为1 nm的双金纳米棒、三金纳米棒和四金纳米棒的情况,如图5所示。由图5可知,垂直分布的双金纳米棒复合基底的|E|2为3×103 W/m2,三金纳米棒复合基底的|E|2为2×103 W/m2,四金纳米棒复合基底的|E|2为1.5×103 W/m2。双金纳米棒复合基底的|E|2略大于三金纳米棒和四金纳米棒复合基底,说明多根金棒之间存在的间隙会产生“热点”,对SERS效应有一定贡献,但增强效果不明显。

图 5. XZ平面上不同复合基底的|E|2对数分布。(a)双金纳米棒复合基底;(b)三金纳米棒复合基底;(c)四金纳米棒复合基底

Fig. 5. Logarithmic plots of |E|2 of different composite substrates in XZ plane. (a) GO/dual-AuNRs composite substrate; (b) GO/three-AuNRs composite substrate; (c) GO/four-AuNRs composite substrate

下载图片 查看所有图片

理论仿真发现,金纳米棒间隙对SERS效应具有影响,这里主要讨论双金纳米棒间隙对SERS性能的影响。图6所示为间隙从0.5 nm增加到4 nm(间隔为0.5 nm)过程中,复合基底|E|2的变化趋势,可知,随着金纳米棒间隙增大,在XZ平面上复合基底的|E|2先增大后减小。金纳米棒之间存在的“热点”使得电场增强,从而影响SERS性能。当间隙为2 nm时,复合基底的|E|2最大,为3.6×103 W/m2

图 6. XZ平面上复合基底的|E|2随金纳米棒间隙的变化

Fig. 6. Variation in |E|2 with distance between Au nanorods in XZ plane

下载图片 查看所有图片

此外,金纳米棒的排列方式也对SERS效应具有影响,这里主要讨论三金纳米棒和四金纳米棒排列方式对SERS的影响,排列方式如图7(a)所示,金纳米棒的间隙为1 nm。FDTD Solutions软件的仿真结果如图7(b)~(c)所示。由图7(b)、(c)可知,三金纳米棒复合基底在XZ平面上的|E|2为1620 W/m2,四金纳米棒复合基底在XZ平面上的|E|2为1505 W/m2,与图5所示的一行排列的金纳米棒相比,|E|2都减小了1/2。原因可能是在轴对称偏振光束径向偏振光的激发下,正三角形排列和正方形排列的金纳米棒之间相互作用产生了干涉、衍射,使得它们之间的电场强度相互抵消, SERS性能较差。

图 7. XZ平面上金纳米棒的排列方式和复合基底的|E|2分布。(a)正三角形排列的三金纳米棒和正方形排列的四金纳米棒;(b)正三角形排列的三金纳米棒复合基底的|E|2分布;(c)正方形排列的四金纳米棒复合基底的|E|2分布

Fig. 7. Arrangements of AuNRs and |E|2 distribution in XZ plane. (a) Equilateral triangular arrangement of three-AuNRs and square arrangement of four-AuNRs; (b) |E|2 distribution of triangular arrangement of AuNRs; (c) |E|2 distribution of square arrangement of AuNRs

下载图片 查看所有图片

3.4 SERS复合基底的增强因子

采用描述SERS效应最重要的表征参数之一——SERS增强因子GEF反映SERS的增强效应。根据相关的文献[52-54]可知,

GEF=E04Ei4,(1)

式中:Ei为入射光源的电场强度;E0为探测到的大分子物质处电场强度的总和。

一般情况下,在仿真的过程中,入射光源的电场强度Ei=1 V/m,因此SERS增强因子近似为

GEFE04(2)

根据(2)式可以得出相应的SERS增强因子。表1所示为复合基底在不同偏振光激发下的SERS增强因子。由表1可知:线偏振光激发下3 nm-GO/单金纳米棒复合基底的增强因子为3.6×102,径向偏振光激发下的增强因子为9×108;径向偏振光激发下不含GO的单金纳米棒SERS基底的增强因子为7×107,比含有GO的复合基底的增强因子小1个数量级,说明复合基底中的电磁场增强机制占主导,但是GO在复合基底中也具有不可替代的增强效果。进一步比较不同GO厚度和不同金纳米棒数量的复合基底在径向偏振光激发下的SERS增强因子可知, 3 nm-GO/单金纳米棒复合基底在径向偏振光激发下的SERS性能最好,为检测、表征其他大分子有机物提供了理论基础。

表 1. 复合基底的SERS增强因子

Table 1. SERS enhancement factor of composite substrate

Incident polarized lightComposite substrateEnhancement factor
Linearly polarized light3 nm-GO/single-AuNR3.6×102
Radially polarized lightsingle-AuNR7×107
Radially polarized light1 nm-GO/single-AuNR1.69×108
Radially polarized light2 nm-GO/single-AuNR2.56×108
Radially polarized light3 nm-GO/single-AuNR9×108
Radially polarized light4 nm-GO/single-AuNR6.25×108
Radially polarized light5 nm-GO/single-AuNR7.29×108
Radially polarized lightGO/dual-AuNRs107
Radially polarized lightGO/three-AuNRs4×106
Radially polarized lightGO/four-AuNRs2.3×106

查看所有表

与文献[ 28-29]相比,本研究实现的SERS增强在方法与物理机制上有明显的区别。文献[ 28-29]主要利用径向偏振光紧聚焦产生的超分辨纵向光场来激发银纳米粒子产生等离子体共振,从而增强电场强度,SERS增强的机制主要是电磁增强。本研究主要基于径向偏振光直接激发(没有聚焦)新型的杂化GO/单金纳米棒复合基底,一方面,偏振的轴对称性能实现金纳米棒与GO薄膜接触面等离子共振的电磁增强;另一方面,GO内在的化学性能可以促进表面电荷转移,实现化学增强。

4 结论

本课题组利用FDTD Solutions有限元仿真软件,对GO/AuNRs复合基底的电场强度和SERS效应进行了分析。结果发现,复合基底的SERS性能与激发光源、金纳米棒的数量、GO的厚度等有关。径向偏振光作为光源激发GO/单金纳米棒复合基底,在XZ平面上产生的|E|2最大,为3×104 W/m2,对应的SERS增强因子为9×108,比线偏振光激发增大了6个数量级。同时,在径向偏振光激发下,分析了不同数量、排列方式,以及不同间隙的金纳米棒对SERS效应的影响,结果表明:随着GO厚度增大,增强因子先增大后减小,GO厚度为3 nm时得到的复合基底的增强效果最好。在径向偏振光和“热点”的共同作用下,双金纳米棒、三金纳米棒、四金纳米棒复合基底的SERS增强因子逐渐递减,且与单金纳米棒复合基底相比减小了1~2个数量级。在径向偏振光的激发下,金纳米棒的电磁增强机制与GO的化学增强机制结合,产生了具有高灵敏度、高稳定性和高空间分辨率的3 nm-GO/单金纳米棒复合基底,它可以作为一种稳健的传感检测,广泛应用于生物医药、电子器件与微流控芯片等领域。

参考文献

[1] Fleischmann M, Hendra P J. McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 1974, 26(2): 163-166.

    Fleischmann M, Hendra P J. McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 1974, 26(2): 163-166.

[2] Sarma T K, Chattopadhyay A. Starch-mediated shape-selective synthesis of Au nanoparticles with tunable longitudinal plasmon resonance[J]. Langmuir, 2004, 20(9): 3520-3524.

    Sarma T K, Chattopadhyay A. Starch-mediated shape-selective synthesis of Au nanoparticles with tunable longitudinal plasmon resonance[J]. Langmuir, 2004, 20(9): 3520-3524.

[3] Hering K, Cialla D, Ackermann K, et al. SERS: a versatile tool in chemical and biochemical diagnostics[J]. Analytical and Bioanalytical Chemistry, 2008, 390(1): 113-124.

    Hering K, Cialla D, Ackermann K, et al. SERS: a versatile tool in chemical and biochemical diagnostics[J]. Analytical and Bioanalytical Chemistry, 2008, 390(1): 113-124.

[4] 丁松园, 吴德印, 杨志林, 等. 表面增强拉曼散射增强机理的部分研究进展[J]. 高等学校化学学报, 2008, 29(12): 2569-2581.

    丁松园, 吴德印, 杨志林, 等. 表面增强拉曼散射增强机理的部分研究进展[J]. 高等学校化学学报, 2008, 29(12): 2569-2581.

    Ding S Y, Wu D Y, Yang Z L, et al. Some progresses in mechanistic studies on surface-enhanced raman scattering[J]. Chemical Journal of Chinese Universities, 2008, 29(12): 2569-2581.

    Ding S Y, Wu D Y, Yang Z L, et al. Some progresses in mechanistic studies on surface-enhanced raman scattering[J]. Chemical Journal of Chinese Universities, 2008, 29(12): 2569-2581.

[5] Tong L M, Zhu T, Liu Z F. Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: from self-assembled arrays to individual gold nanoparticles[J]. Chemical Society Reviews, 2011, 40(3): 1296-1304.

    Tong L M, Zhu T, Liu Z F. Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: from self-assembled arrays to individual gold nanoparticles[J]. Chemical Society Reviews, 2011, 40(3): 1296-1304.

[6] Park W H, Kim Z H. Charge transfer enhancement in the SERS of a single molecule[J]. Nano Letters, 2010, 10(10): 4040-4048.

    Park W H, Kim Z H. Charge transfer enhancement in the SERS of a single molecule[J]. Nano Letters, 2010, 10(10): 4040-4048.

[7] Stiles P L, Dieringer J A, Shah N C, et al. Surface-enhanced Raman spectroscopy[J]. Annual Review of Analytical Chemistry, 2008, 1: 601-626.

    Stiles P L, Dieringer J A, Shah N C, et al. Surface-enhanced Raman spectroscopy[J]. Annual Review of Analytical Chemistry, 2008, 1: 601-626.

[8] Tian Z Q, Ren B, Wu D Y. Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures[J]. The Journal of Physical Chemistry B, 2002, 106(37): 9463-9483.

    Tian Z Q, Ren B, Wu D Y. Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures[J]. The Journal of Physical Chemistry B, 2002, 106(37): 9463-9483.

[9] Eustis S. El-Sayed M A. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes[J]. Chemical Society Reviews, 2006, 35(3): 209-217.

    Eustis S. El-Sayed M A. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes[J]. Chemical Society Reviews, 2006, 35(3): 209-217.

[10] 张晓蕾, 张洁, 朱永. Ag纳米颗粒修饰碳纳米管复合结构的拉曼增强及其结构参数优化[J]. 光学学报, 2018, 38(4): 0430004.

    张晓蕾, 张洁, 朱永. Ag纳米颗粒修饰碳纳米管复合结构的拉曼增强及其结构参数优化[J]. 光学学报, 2018, 38(4): 0430004.

    Zhang X L, Zhang J, Zhu Y. Raman enhancement and structural parameters optimization of silver nanoparticles/carbon nanotubes composite structure[J]. Acta Optica Sinica, 2018, 38(4): 0430004.

    Zhang X L, Zhang J, Zhu Y. Raman enhancement and structural parameters optimization of silver nanoparticles/carbon nanotubes composite structure[J]. Acta Optica Sinica, 2018, 38(4): 0430004.

[11] Xu B B, Zhang R, Liu X Q, et al. On-chip fabrication of silver microflower arrays as a catalytic microreactor for allowing in situ SERS monitoring[J]. Chemical Communications, 2012, 48(11): 1680-1682.

    Xu B B, Zhang R, Liu X Q, et al. On-chip fabrication of silver microflower arrays as a catalytic microreactor for allowing in situ SERS monitoring[J]. Chemical Communications, 2012, 48(11): 1680-1682.

[12] Ling X, Xie L M, Fang Y, et al. Can graphene be used as a substrate for Raman enhancement?[J]. Nano Letters, 2010, 10(2): 553-561.

    Ling X, Xie L M, Fang Y, et al. Can graphene be used as a substrate for Raman enhancement?[J]. Nano Letters, 2010, 10(2): 553-561.

[13] Lombardi J R, Birke R L, Lu T H, et al. Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg-Teller contributions[J]. The Journal of Chemical Physics, 1986, 84(8): 4174-4180.

    Lombardi J R, Birke R L, Lu T H, et al. Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg-Teller contributions[J]. The Journal of Chemical Physics, 1986, 84(8): 4174-4180.

[14] Roy D, Furtak T E. Characterization of surface complexes in enhanced Raman scattering[J]. The Journal of Chemical Physics, 1984, 81(9): 4168-4175.

    Roy D, Furtak T E. Characterization of surface complexes in enhanced Raman scattering[J]. The Journal of Chemical Physics, 1984, 81(9): 4168-4175.

[15] Zheng X R, Jia B H, Chen X, et al. In situ third-order non-linear responses during laser reduction of graphene oxide thin films towards on-chip non-linear photonic devices[J]. Advanced Materials, 2014, 26(17): 2699-2703.

    Zheng X R, Jia B H, Chen X, et al. In situ third-order non-linear responses during laser reduction of graphene oxide thin films towards on-chip non-linear photonic devices[J]. Advanced Materials, 2014, 26(17): 2699-2703.

[16] Zheng X R, Jia B H, Lin H, et al. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing[J]. Nature Communications, 2015, 6: 8433.

    Zheng X R, Jia B H, Lin H, et al. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing[J]. Nature Communications, 2015, 6: 8433.

[17] Zhao Y C, Nie Z Q, Zhai A P, et al. Optical super-resolution effect induced by nonlinear characteristics of graphene oxide films[J]. Optoelectronics Letters, 2018, 14(1): 21-24.

    Zhao Y C, Nie Z Q, Zhai A P, et al. Optical super-resolution effect induced by nonlinear characteristics of graphene oxide films[J]. Optoelectronics Letters, 2018, 14(1): 21-24.

[18] Wang S C, Ouyang X Y, Feng Z W, et al. Diffractive photonic applications mediated by laser reduced graphene oxides[J]. Opto-Electronic Advances, 2018, 1(2): 17000201.

    Wang S C, Ouyang X Y, Feng Z W, et al. Diffractive photonic applications mediated by laser reduced graphene oxides[J]. Opto-Electronic Advances, 2018, 1(2): 17000201.

[19] Yang Y Y, Wu J Y, Xu X Y, et al. Invited article: Enhanced four-wave mixing in waveguides integrated with graphene oxide[J]. APL Photonics, 2018, 3(12): 120803.

    Yang Y Y, Wu J Y, Xu X Y, et al. Invited article: Enhanced four-wave mixing in waveguides integrated with graphene oxide[J]. APL Photonics, 2018, 3(12): 120803.

[20] Wu D Y, Liu X M, Duan S, et al. Chemical enhancement effects in SERS spectra: a quantum chemical study of pyridine interacting with copper, silver, gold and platinum metals[J]. The Journal of Physical Chemistry C, 2008, 112(11): 4195-4204.

    Wu D Y, Liu X M, Duan S, et al. Chemical enhancement effects in SERS spectra: a quantum chemical study of pyridine interacting with copper, silver, gold and platinum metals[J]. The Journal of Physical Chemistry C, 2008, 112(11): 4195-4204.

[21] Furtak T E, Roy D. Nature of the active site in surface-enhanced Raman scattering[J]. Physical Review Letters, 1983, 50(17): 1301-1304.

    Furtak T E, Roy D. Nature of the active site in surface-enhanced Raman scattering[J]. Physical Review Letters, 1983, 50(17): 1301-1304.

[22] 高思敏, 王红艳, 林月霞, 等. 黄曲霉素B1在银团簇表面吸附的表面增强拉曼光谱[J]. 物理化学学报, 2012, 28(9): 2044-2050.

    高思敏, 王红艳, 林月霞, 等. 黄曲霉素B1在银团簇表面吸附的表面增强拉曼光谱[J]. 物理化学学报, 2012, 28(9): 2044-2050.

    Gao S M, Wang H Y, Lin Y X, et al. Surface-enhanced Raman spectra of aflatoxin B1 adsorbed on silver clusters[J]. Acta Physico-Chimica Sinica, 2012, 28(9): 2044-2050.

    Gao S M, Wang H Y, Lin Y X, et al. Surface-enhanced Raman spectra of aflatoxin B1 adsorbed on silver clusters[J]. Acta Physico-Chimica Sinica, 2012, 28(9): 2044-2050.

[23] Huang Q L, Wang J M, Wei W X, et al. A facile and green method for synthesis of reduced graphene oxide/Ag hybrids as efficient surface enhanced Raman scattering platforms[J]. Journal of Hazardous Materials, 2015, 283: 123-130.

    Huang Q L, Wang J M, Wei W X, et al. A facile and green method for synthesis of reduced graphene oxide/Ag hybrids as efficient surface enhanced Raman scattering platforms[J]. Journal of Hazardous Materials, 2015, 283: 123-130.

[24] Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam[J]. Physical Review Letters, 2003, 91(23): 233901.

    Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam[J]. Physical Review Letters, 2003, 91(23): 233901.

[25] Wang H F, Shi L P, Lukyanchuk B, et al. Creation of a needle of longitudinally polarized light in vacuum using binary optics[J]. Nature Photonics, 2008, 2(8): 501-505.

    Wang H F, Shi L P, Lukyanchuk B, et al. Creation of a needle of longitudinally polarized light in vacuum using binary optics[J]. Nature Photonics, 2008, 2(8): 501-505.

[26] Li X P, Lan T H, Tien C H, et al. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam[J]. Nature Communications, 2012, 3: 998.

    Li X P, Lan T H, Tien C H, et al. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam[J]. Nature Communications, 2012, 3: 998.

[27] Kozawa Y, Matsunaga D, Sato S. Superresolution imaging via superoscillation focusing of a radially polarized beam[J]. Optica, 2018, 5(2): 86-92.

    Kozawa Y, Matsunaga D, Sato S. Superresolution imaging via superoscillation focusing of a radially polarized beam[J]. Optica, 2018, 5(2): 86-92.

[28] Dou X J, Yang A P, Min C J, et al. Polarization-controlled gap-mode surface-enhanced Raman scattering with a single nanoparticle[J]. Journal of Physics D: Applied Physics, 2017, 50(25): 255302.

    Dou X J, Yang A P, Min C J, et al. Polarization-controlled gap-mode surface-enhanced Raman scattering with a single nanoparticle[J]. Journal of Physics D: Applied Physics, 2017, 50(25): 255302.

[29] Yang A P, Du L P, Dou X J, et al. Sensitive gap-enhanced Raman spectroscopy with a perfect radially polarized beam[J]. Plasmonics, 2018, 13(3): 991-996.

    Yang A P, Du L P, Dou X J, et al. Sensitive gap-enhanced Raman spectroscopy with a perfect radially polarized beam[J]. Plasmonics, 2018, 13(3): 991-996.

[30] 雷星, 刘晔, 黄竹林, 等. 高灵敏度锥形光纤SERS探针及其在农残检测中的应用[J]. 光学学报, 2015, 35(8): 0806001.

    雷星, 刘晔, 黄竹林, 等. 高灵敏度锥形光纤SERS探针及其在农残检测中的应用[J]. 光学学报, 2015, 35(8): 0806001.

    Lei X, Liu Y, Huang Z L, et al. High sensitivity tapered fiber SERS probe and its application on pesticide residues detection[J]. Acta Optica Sinica, 2015, 35(8): 0806001.

    Lei X, Liu Y, Huang Z L, et al. High sensitivity tapered fiber SERS probe and its application on pesticide residues detection[J]. Acta Optica Sinica, 2015, 35(8): 0806001.

[31] Yin P G, Jiang L, Lang X F, et al. Quantitative analysis of mononucleotides by isotopic labeling surface-enhanced Raman scattering spectroscopy[J]. Biosensors and Bioelectronics, 2011, 26(12): 4828-4831.

    Yin P G, Jiang L, Lang X F, et al. Quantitative analysis of mononucleotides by isotopic labeling surface-enhanced Raman scattering spectroscopy[J]. Biosensors and Bioelectronics, 2011, 26(12): 4828-4831.

[32] 韩洪文, 闫循领, 班戈, 等. 糖尿病及并发症血清的表面增强拉曼光谱[J]. 光学学报, 2009, 29(4): 1122-1125.

    韩洪文, 闫循领, 班戈, 等. 糖尿病及并发症血清的表面增强拉曼光谱[J]. 光学学报, 2009, 29(4): 1122-1125.

    Han H W, Yan X L, Ban G, et al. Surface-enhanced Raman spectra analysis of serum from diabetes mellitus and complication[J]. Acta Optica Sinica, 2009, 29(4): 1122-1125.

    Han H W, Yan X L, Ban G, et al. Surface-enhanced Raman spectra analysis of serum from diabetes mellitus and complication[J]. Acta Optica Sinica, 2009, 29(4): 1122-1125.

[33] 赵宇翔, 彭少杰, 赵建丰, 等. 表面增强拉曼光谱法快速检测牛奶中的三聚氰胺[J]. 乳业科学与技术, 2011, 34(1): 27-29.

    赵宇翔, 彭少杰, 赵建丰, 等. 表面增强拉曼光谱法快速检测牛奶中的三聚氰胺[J]. 乳业科学与技术, 2011, 34(1): 27-29.

    Zhao Y X, Peng S J, Zhao J F, et al. Surface enhanced Raman scattering for the rapid detection of melamine in milk[J]. Journal of Dairy Science and Technology, 2011, 34(1): 27-29.

    Zhao Y X, Peng S J, Zhao J F, et al. Surface enhanced Raman scattering for the rapid detection of melamine in milk[J]. Journal of Dairy Science and Technology, 2011, 34(1): 27-29.

[34] 刘仁明, 刘瑞明, 武延春, 等. 基于新型NIR-SERS基底的肝癌血清NIR-SERS光谱研究[J]. 光学学报, 2011, 31(6): 0630001.

    刘仁明, 刘瑞明, 武延春, 等. 基于新型NIR-SERS基底的肝癌血清NIR-SERS光谱研究[J]. 光学学报, 2011, 31(6): 0630001.

    Liu R M, Liu R M, Wu Y C, et al. Investigations on NIR-SERS spectra of serum for liver cancer based on NIR-SERS substrate[J]. Acta Optica Sinica, 2011, 31(6): 0630001.

    Liu R M, Liu R M, Wu Y C, et al. Investigations on NIR-SERS spectra of serum for liver cancer based on NIR-SERS substrate[J]. Acta Optica Sinica, 2011, 31(6): 0630001.

[35] 董子豪, 刘晔, 秦琰琰, 等. 激光诱导液面自组装法制备光纤SERS探针及其农药残留检测应用[J]. 中国激光, 2018, 45(8): 0804009.

    董子豪, 刘晔, 秦琰琰, 等. 激光诱导液面自组装法制备光纤SERS探针及其农药残留检测应用[J]. 中国激光, 2018, 45(8): 0804009.

    Dong Z H, Liu Y, Qin Y Y, et al. Fabrication of fiber SERS probes by laser-induced self-assembly method in a meniscus and its applications in trace detection of pesticide residues[J]. Chinese Journal of Lasers, 2018, 45(8): 0804009.

    Dong Z H, Liu Y, Qin Y Y, et al. Fabrication of fiber SERS probes by laser-induced self-assembly method in a meniscus and its applications in trace detection of pesticide residues[J]. Chinese Journal of Lasers, 2018, 45(8): 0804009.

[36] Fan W, Miao Y E, Ling X Y, et al. Free-standing silver nanocube/graphene oxide hybrid paper for surface-enhanced Raman scattering[J]. Chinese Journal of Chemistry, 2016, 34(1): 73-81.

    Fan W, Miao Y E, Ling X Y, et al. Free-standing silver nanocube/graphene oxide hybrid paper for surface-enhanced Raman scattering[J]. Chinese Journal of Chemistry, 2016, 34(1): 73-81.

[37] Zhao Y, Chu B H, Zhang L C, et al. Constructing sensitive SERS substrate with a sandwich structure separated by single layer graphene[J]. Sensors and Actuators B: Chemical, 2018, 263: 634-642.

    Zhao Y, Chu B H, Zhang L C, et al. Constructing sensitive SERS substrate with a sandwich structure separated by single layer graphene[J]. Sensors and Actuators B: Chemical, 2018, 263: 634-642.

[38] Jiao S J, Wang Y K, Chen C, et al. Graphene oxide mediated surface-enhanced Raman scattering substrate: well-suspending and label-free detecting for protein[J]. Journal of Molecular Structure, 2014, 1062: 48-52.

    Jiao S J, Wang Y K, Chen C, et al. Graphene oxide mediated surface-enhanced Raman scattering substrate: well-suspending and label-free detecting for protein[J]. Journal of Molecular Structure, 2014, 1062: 48-52.

[39] 柯善林, 阚彩侠, 莫博, 等. 金纳米棒的光学性质研究进展[J]. 物理化学学报, 2012, 28(6): 1275-1290.

    柯善林, 阚彩侠, 莫博, 等. 金纳米棒的光学性质研究进展[J]. 物理化学学报, 2012, 28(6): 1275-1290.

    Ke S L, Kan C X, Mo B, et al. Research progress on the optical properties of gold nanorods[J]. Acta Physico-Chimica Sinica, 2012, 28(6): 1275-1290.

    Ke S L, Kan C X, Mo B, et al. Research progress on the optical properties of gold nanorods[J]. Acta Physico-Chimica Sinica, 2012, 28(6): 1275-1290.

[40] Daniel M C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chemical Reviews, 2004, 104(1): 293-346.

    Daniel M C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chemical Reviews, 2004, 104(1): 293-346.

[41] Polavarapu L. Liz-Marzán L M. Towards low-cost flexible substrates for nanoplasmonic sensing[J]. Physical Chemistry Chemical Physics, 2013, 15(15): 5288-5300.

    Polavarapu L. Liz-Marzán L M. Towards low-cost flexible substrates for nanoplasmonic sensing[J]. Physical Chemistry Chemical Physics, 2013, 15(15): 5288-5300.

[42] Zeng Z, Liu Y Y, Wei J J. Recent advances in surface-enhanced Raman spectroscopy (SERS): finite-difference time-domain (FDTD) method for SERS and sensing applications[J]. TrAC Trends in Analytical Chemistry, 2016, 75: 162-173.

    Zeng Z, Liu Y Y, Wei J J. Recent advances in surface-enhanced Raman spectroscopy (SERS): finite-difference time-domain (FDTD) method for SERS and sensing applications[J]. TrAC Trends in Analytical Chemistry, 2016, 75: 162-173.

[43] Tira C, Tira D, Simon T, et al. Finite-difference time-domain (FDTD) design of gold nanoparticle chains with specific surface plasmon resonance[J]. Journal of Molecular Structure, 2014, 1072: 137-143.

    Tira C, Tira D, Simon T, et al. Finite-difference time-domain (FDTD) design of gold nanoparticle chains with specific surface plasmon resonance[J]. Journal of Molecular Structure, 2014, 1072: 137-143.

[44] Johnson P B, Christy R W. Optical constants of the noble metals[J]. Physical Review B, 1972, 6(12): 4370-4379.

    Johnson P B, Christy R W. Optical constants of the noble metals[J]. Physical Review B, 1972, 6(12): 4370-4379.

[45] Nesterov V, Niziev G, Yakunin P. Generation of high-power radially polarized beam[J]. Journal of Physics D: Applied Physics, 1999, 32(22): 2871-2875.

    Nesterov V, Niziev G, Yakunin P. Generation of high-power radially polarized beam[J]. Journal of Physics D: Applied Physics, 1999, 32(22): 2871-2875.

[46] Jiao J Q, Wang X, Wackenhut F, et al. Polarization-dependent SERS at differently oriented single gold nanorods[J]. ChemPhysChem, 2012, 13(4): 952-958.

    Jiao J Q, Wang X, Wackenhut F, et al. Polarization-dependent SERS at differently oriented single gold nanorods[J]. ChemPhysChem, 2012, 13(4): 952-958.

[47] 崔祥霞, 陈君, 杨兆华, 等. 径向偏振光研究的最新进展[J]. 激光杂志, 2009, 30(2): 7-10.

    崔祥霞, 陈君, 杨兆华, 等. 径向偏振光研究的最新进展[J]. 激光杂志, 2009, 30(2): 7-10.

    Cui X X, Chen J, Yang Z H, et al. Research progress on radially polarized beam[J]. Laser Journal, 2009, 30(2): 7-10.

    Cui X X, Chen J, Yang Z H, et al. Research progress on radially polarized beam[J]. Laser Journal, 2009, 30(2): 7-10.

[48] Fan W, Lee Y H, Pedireddy S, et al. Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing[J]. Nanoscale, 2014, 6(9): 4843-4851.

    Fan W, Lee Y H, Pedireddy S, et al. Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing[J]. Nanoscale, 2014, 6(9): 4843-4851.

[49] 郝锐, 张丛筠, 卢亚, 等. 氧化石墨烯/金银纳米粒子复合材料的制备及其SERS效应研究[J]. 化学进展, 2016, 28(8): 1186-1195.

    郝锐, 张丛筠, 卢亚, 等. 氧化石墨烯/金银纳米粒子复合材料的制备及其SERS效应研究[J]. 化学进展, 2016, 28(8): 1186-1195.

    Hao R, Zhang C J, Lu Y, et al. Preparation and surface-enhanced Raman scattering effect of graphene oxide/(Au/Ag) hybrid materials[J]. Progress in Chemistry, 2016, 28(8): 1186-1195.

    Hao R, Zhang C J, Lu Y, et al. Preparation and surface-enhanced Raman scattering effect of graphene oxide/(Au/Ag) hybrid materials[J]. Progress in Chemistry, 2016, 28(8): 1186-1195.

[50] ArocaR, Rodriguez-Llorente S. Surface-enhanced vibrational spectroscopy[J]. Journal of Molecular Structure, 1997, 408/409: 17- 22.

    ArocaR, Rodriguez-Llorente S. Surface-enhanced vibrational spectroscopy[J]. Journal of Molecular Structure, 1997, 408/409: 17- 22.

[51] 徐伟华. 氧化石墨烯/酚醛树脂原位复合材料制备和性能研究[D]. 桂林: 桂林理工大学, 2013: 26.

    徐伟华. 氧化石墨烯/酚醛树脂原位复合材料制备和性能研究[D]. 桂林: 桂林理工大学, 2013: 26.

    Xu WH. Preparation and properties graphene oxide/phenol formaldehyde resin in-situ composition[D]. Guilin: Guilin University of Technology, 2013: 26.

    Xu WH. Preparation and properties graphene oxide/phenol formaldehyde resin in-situ composition[D]. Guilin: Guilin University of Technology, 2013: 26.

[52] Gong T C, Zhu Y, Zhang J, et al. Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene[J]. Carbon, 2015, 87: 385-394.

    Gong T C, Zhu Y, Zhang J, et al. Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene[J]. Carbon, 2015, 87: 385-394.

[53] Cai W B, Ren B, Li X Q, et al. Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment[J]. Surface Science, 1998, 406(1/2/3): 9-22.

    Cai W B, Ren B, Li X Q, et al. Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment[J]. Surface Science, 1998, 406(1/2/3): 9-22.

[54] Le Ru E C, Blackie E, Meyer M, et al. . Surface enhanced Raman scattering enhancement factors: a comprehensive study[J]. The Journal of Physical Chemistry C, 2007, 111(37): 13794-13803.

    Le Ru E C, Blackie E, Meyer M, et al. . Surface enhanced Raman scattering enhancement factors: a comprehensive study[J]. The Journal of Physical Chemistry C, 2007, 111(37): 13794-13803.

杨东, 聂仲泉, 翟爱平, 田彦婷, 贾宝华. 径向偏振光激发氧化石墨烯/金纳米棒复合基底的表面增强拉曼散射性能[J]. 光学学报, 2019, 39(6): 0630003. Dong Yang, Zhongquan Nie, Aiping Zhai, Yanting Tian, Baohua Jia. Surface-Enhanced Raman Scattering Performances of GO/AuNRs Composite Substrates Excited by Radially Polarized Light[J]. Acta Optica Sinica, 2019, 39(6): 0630003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!