人工晶体学报, 2023, 52 (7): 1325, 网络出版: 2023-10-28  

Er掺杂CGA晶体的生长及浓度优化研究

Growth and Concentration Optimization of Er-Doped CGA Crystals
作者单位
1 暨南大学光电工程系,广州 510632
2 广东省晶体与激光技术工程研究中心,广州 510632
摘要
本文采用激光加热基座法生长出一系列掺杂不同Er3+浓度(摩尔分数)的Er∶CaGdAlO4(Er∶CGA)激光晶体,并对制备出的系列晶体开展详细的光学性能研究。结合J-O理论计算和光学性能表征,通过对比吸收光谱中780~840和955~1 020 nm的最大吸收系数、吸收截面、半峰全宽和辐射寿命等,以及荧光发射光谱的发射强度、发射截面和能级荧光寿命等光学性能参数,得到Er3+的最佳掺杂浓度为5%。该工作为获得一种有望用于1.5~1.7 μm近红外波段全固态激光器的新型激光增益介质提供了一定的实验基础。
Abstract
In this paper, a series of Er∶CaGdAlO4 (Er∶CGA) laser crystals with different Er3+ doping concentrations (molar fraction) were grown by laser-heated pedestal growth method. The optical properties of the prepared series crystals were studied in detail. The maximum absorption coefficient, absorption cross section, full width at half maximum and radiation lifetime at the range of 780~840 and 955~1 020 nm in the absorption spectra were compared by combining the J-O theoretical calculation and optical characterization. In addition, the optical performance parameters of fluorescence emission spectrum such as emission intensity, emission cross section and energy level fluorescence lifetime were characterized and futher calculated. As a result, the optimal doping concentration of Er3+ is 5%. This work provides a certain experimental basis for obtaining a new type of laser gain medium which is expected to be used in 1.5~1.7 μm near-infrared band all-solid-state laser.
参考文献

[1] VODOPYANOV K L. Mid-infrared optical parametric generator with extra-wide (3-19-μm) tunability: applications for spectroscopy of two-dimensional electrons in quantum wells[J]. Josa B, 1999, 16(9): 1579-1586.

[2] PRATISTO H, FRENZ M, ITH M, et al. Temperature and pressure effects during erbium laser stapedotomy[J]. Lasers in Surgery and Medicine, 1996, 18(1): 100-108.

[3] KOCH G J, BARNES B W, PETROS M, et al. Coherent differential absorption lidar measurements of CO2[J]. Applied Optics, 2004, 43(26): 5092-5099.

[4] WEI T, TIAN Y, CHEN F Z, et al. Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass[J]. Scientific Reports, 2014, 4: 6060.

[5] ZHOU P, WANG X, MA Y, et al. Review on recent progress on mid-infrared fiber lasers[J]. Laser Physics, 2012, 22(11): 1744-1751.

[6] YANG S, XIA H P, JIANG Y Z, et al. Tm3+ doped α-NaYF4 single crystal for 2 μm laser application[J]. Journal of Alloys and Compounds, 2015, 643: 1-6.

[7] TARG R, STEAKLEY B C, HAWLEY J G, et al. Coherent lidar airborne wind sensor II: flight-test results at 2 and 10 μm[J]. Applied Optics, 1996, 35(36): 7117-7127.

[8] JACKSON S D. Towards high-power mid-infrared emission from a fibre laser[J]. Nature Photonics, 2012, 6(7): 423-431.

[9] RICHARDSON D J, NILSSON J, CLARKSON W A. High power fiber lasers: current status and future perspectives[J]. Josa B, 2010, 27(11): B63-B92.

[10] LUO A P, LUO Z C, XU W C, et al. Tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation[J]. Laser Physics Letters, 2011, 8(8): 601-605.

[11] ZHAO G K, LIN W, CHEN H J, et al. Dissipative soliton resonance in Bismuth-doped fiber laser[J]. Optics Express, 2017, 25(17): 20923.

[12] KEYES R J, QUIST T M. Injection luminescent pumping of CaF2∶U3+ with GaAs diode lasers[J]. Applied Physics Letters, 1964, 4(3): 50-52.

[13] 谭慧瑜, 张沛雄, 牛晓晨, 等. 可见光激光晶体Sm3+∶CaDyAlO4的光学性能[J]. 发光学报, 2022, 43(11): 1741-1749.

[14] CHEN L J, WANG Z P, ZHUANG S D, et al. Dual-wavelength Nd: YAG crystal laser at 1 074 and 1 112 nm[J]. Optics Letters, 2011, 36(13): 2554-2556.

[15] SALIN F, SQUIER J, PICH M. Mode locking of Ti∶Al2O3 lasers and self-focusing: a Gaussian approximation[J]. Optics Letters, 1991, 16(21): 1674-1676.

[16] ZHANG H R, CHAO M J, GAO M Y, et al. High power diode single-end-pumped Nd∶YVO4 laser[J]. Optics & Laser Technology, 2003, 35(6): 445-449.

[17] KUSHIDA T, MARCOS H M, GEUSIC J E. Laser transition cross section and fluorescence branching ratio for Nd3+ in yttrium aluminum garnet[J]. Physical Review, 1968, 167(2): 289-291.

[18] KRUPKE W F, HUBER G. Introduction[J]. Journal of the Optical Society of America B, 1986, 3(1): 79.

[19] SINGH S, SMITH R G, VAN UITERT L G. Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature[J]. Physical Review B, 1974, 10(6): 2566-2572.

[20] REEKIE L, JAUNCEY I M, POOLE S B, et al. Diode-laser-pumped operation of an Er3+-doped single-mode fibre laser[J]. Electronics Letters, 1987, 23(20): 1076.

[21] CHEN Y, TAN J C, ZHANG P X, et al. Influence of Nd3+ concentration on mid-infrared emission in PbF2 crystal co-doped with Ho3+ and Nd3+ ions[J]. Journal of Rare Earths, 2023

[22] 张 振, 苏良碧. 掺Er3+晶体近3 μm中红外激光研究进展[J]. 人工晶体学报, 2020, 49(8): 1361-1368.

[23] 崔文豪, 彭亚茹, 李 静, 等. 808 nm/980 nm近红外光激发下CaSc2O4∶Er,Nd纳米晶的上转换发光特性(英文)[J]. 发光学报, 2023, 44(2): 289-297.

[24] ZHAI X S, LI Y, ZHAO W, et al. One-pot synthesis of hexagonal NaLuF4∶Yb, Er microcrystals with enhanced upconversion emission and high production yield[J]. Journal of Rare Earths, 2023, 41(4): 498-506.

[25] LIU Z, SHE J B, PENG B. Spectroscopic properties of Er3+-doped fluoroindate glasses[J]. Journal of Rare Earths, 2022, 40(7): 1037-1042.

[26] SCHWEIZER T, JENSEN T, HEUMANN E, et al. Spectroscopic properties and diode pumped 1.6 μm laser performance in Yb-codoped Er∶Y3Al5O12 and Er∶Y2SiO5[J]. Optics Communications, 1995, 118(5/6): 557-561.

[27] TOLSTIK N A, TROSHIN A E, KURILCHIK S V, et al. Spectroscopy, continuous-wave and Q-switched diode-pumped laser operation of Er3+, Yb3+∶YVO4 crystal[J]. Applied Physics B, 2007, 86(2): 275-278.

[28] BJURSHAGEN S, BRYNOLFSSON P, PASISKEVICIUS V, et al. Crystal growth, spectroscopic characterization, and eye-safe laser operation of erbium- and ytterbium-codoped KLu(WO4)2[J]. Applied Optics, 2008, 47(5): 656-665.

[29] HUANG J H, CHEN Y J, LIN Y F, et al. Enhanced efficiency of Er∶Yb∶Ce∶NaGd(WO4)2 laser at 1.5-1.6 microm by the introduction of high-doping Ce3+ ions[J]. Optics Letters, 2008, 33(21): 2548-2550.

[30] CHEN Y J, HUANG J H, ZOU Y Q, et al. Diode-pumped Er3+∶Yb3+∶NaCe0.43Gd0.57(WO4)2 pulse laser passively Q-switched with a Co2+∶Mg0.4Al2.4O4 saturable absorber at 1.53 μm[J]. Laser Physics, 2014, 24(4): 045810.

[31] JAFFRS A, LOISEAU P, AKA G, et al. CW diode pumped Er, Yb, Ce∶CAS single crystal 1.5 μm laser[J]. Laser Physics, 2014, 24(12): 125801.

[32] CHEN Y J, LIN Y F, HUANG J H, et al. Enhanced performances of diode-pumped sapphire/Er3+∶Yb3+∶LuAl3(BO3)4/sapphire micro-laser at 15-16 μm[J]. Optics Express, 2015, 23(9): 12401.

[33] GORBACHENYA K N, KISEL V E, YASUKEVICH A S, et al. Eye-safe 1.55 μm passively Q-switched Er, Yb∶GdAl3(BO3)4 diode-pumped laser[J]. Optics Letters, 2016, 41(5): 918-921.

[34] GONG G L, CHEN Y J, LIN Y F, et al. Spectral and laser properties of Er3+/Yb3+/Ce3+tri-doped Ca3NbGa3Si2O14 crystal at 1.55 μm[J]. Laser Physics Letters, 2018, 15(4): 045805.

[35] CHEN Y J, LIN Y F, YANG Z M, et al. Eye-safe 155 μm Er∶Yb∶YAl3(BO3)4 microchip laser[J]. OSA Continuum, 2018, 2(1): 142.

[36] CHEN Y J, HUANG J H, LIN Y F, et al. 935 nm-diode-pumped passively Q-switched Er∶Yb∶Sr3Gd2(BO3)4 pulse laser at 1.5-1.6 μm[J]. Optics & Laser Technology, 2021, 140: 107025.

[37] KOECHNER W. Properties of solid-state laser materials[M]//Springer Series in Optical Sciences. New York, NY∶Springer New York, 2007: 38-101.

[38] TAN W D, TANG D Y, XU X D, et al. Femtosecond and continuous-wave laser performance of a diode-pumped Yb3+∶CaYAlO4 laser[J]. Optics Letters, 2011, 36(2): 259-261.

[39] LI D Z, XU X D, ZHU H M, et al. Characterization of laser crystal Yb∶CaYAlO4[J]. Josa B, 2011, 28(7): 1650-1654.

[40] HU Q Q, JIA Z T, TANG C, et al. The origin of coloration of CaGdAlO4 crystals and its effect on their physical properties[J]. CrystEngComm, 2017, 19(3): 537-545.

[41] HU Q Q, JIA Z T, VOLPI A, et al. Crystal growth and spectral broadening of a promising Yb∶CaLuxGd1-xAlO4 disordered crystal for ultrafast laser application[J]. CrystEngComm, 2017, 19(12): 1643-1647.

[42] GREBORIO A, GUANDALINI A, AUS DER AU J. Sub-100 fs pulses with 12.5-W from Yb∶CALGO based oscillators[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2012, 8235: 25.

[43] BOUDEILE J, ZAOUTER Y, HANNA M, et al. Yb∶CaGdAlO4 crystal for 47-fs diode-pumped laser[C]. Proceedings of the Conference on Lasers and Electro-Optics, 2006.

[44] AGNESI A, GREBORIO A, PIRZIO F, et al. 40-fs Yb3+∶CaGdAlO4 laser pumped by a single-mode 350-mW laser diode[J]. Optics Express, 2012, 20(9): 10077.

[45] SVILLANO P, GEORGES P, DRUON F, et al. 32-fs Kerr-lens mode-locked Yb∶CaGdAlO4 oscillator optically pumped by a bright fiber laser[J]. Optics Letters, 2014, 39(20): 6001-6004.

[46] MODSCHING N, PARADIS C, LABAYE F, et al. Kerr lens mode-locked Yb∶CALGO thin-disk laser[J]. Optics Letters, 2018, 43(4): 879-882.

[47] GAO S F, YOU Z Y, XU J L, et al. Continuous wave laser operation of Tm and Ho co-doped CaYAlO4 and CaGdAlO4 crystals[J]. Materials Letters, 2015, 141: 59-62.

[48] DI J Q, XU X D, XIA C T, et al. Growth and spectra properties of Tm, Ho doped and Tm, Ho co-doped CaGdAlO4 crystals[J]. Journal of Luminescence, 2014, 155: 101-107.

[49] RAO H, CONG Z H, QIN Z G, et al. A diode pumped passively mode-locked Nd∶CaGdAlO4 laser[J]. Laser Physics, 2016, 26(4): 045802.

[50] HUANG J H, GONG X H, CHEN Y J, et al. Spectral properties of Er3+-doped CaGdAlO4 crystal for laser application around 1.55 μm[J]. Journal of Alloys and Compounds, 2014, 585: 163-167.

[51] DI J Q, XU X D, XIA C T, et al. Crystal growth, polarized spectra, and laser performance of Yb∶CaGdAlO4 crystal[J]. Laser Physics, 2016, 26(4): 045803.

[52] HE K N, LIU J X, TIAN W L, et al. Passively mode-locked femtosecond disordered crystal laser with Nd∶CGA as gain medium[J]. Chinese Physics Letters, 2016(9): 52-55.

[53] LAN J L, ZHOU Z Y, GUAN X F, et al. Passively Q-switched Tm∶CaGdAlO4 laser using a Cr2+∶ZnSe saturable absorber[J]. Optical Materials Express, 2017, 7(6): 1725.

[54] 谭慧瑜, 汪 瑞, 张沛雄, 等. 钆镱共掺杂铝酸钇晶体的生长及性能研究[J]. 人工晶体学报, 2021, 50(11): 2013-2018.

[55] AULL B, JENSSEN H. Vibronic interactions in Nd: YAG resulting in nonreciprocity of absorption and stimulated emission cross sections[J]. IEEE Journal of Quantum Electronics, 1982, 18(5): 925-930.

[56] BONELLI L, CORNACCHIA F, TONELLI M, et al. Spectroscopic properties of Er∶NaLa(WO4)2 crystals and effect of Ce codoping onto the excited state energy transformation in this crystal[J]. Journal of Luminescence, 2013, 135: 178-186.

[57] SOKLSKA I. Spectroscopic characterisation of LaGaO3∶Er3+ crystals[J]. Applied Physics B, 2000, 71(2): 157-162.

[58] RICO M, MNDEZ-BLAS A, VOLKOV V, et al. Polarization and local disorder effects on the properties of Er3+-doped XBi(YO4)2, X=Li or Na and Y=W or Mo, crystalline tunable laser hosts[J]. Josa B, 2006, 23(10): 2066-2078.

[59] ZHAO D, WANG G F. Growth and spectroscopic characterization of Er3+∶Sr3Y(BO3)3 crystal[J]. Journal of Luminescence, 2010, 130(3): 424-428.

[60] 高 祥, 赵凤杰, 张子龙, 等. 近紫外光激发下KBaGd(MoO4)3∶Er3+的下转换发光及温度传感特性[J]. 发光学报, 2022, 43(10): 1564-1573.

[61] HONG J Q, ZHANG L H, XU M, et al. Effect of erbium concentration on optical properties of Er∶YLF laser crystals[J]. Infrared Physics & Technology, 2017, 80: 38-43.

[62] HU L Z, SUN D L, LUO J Q, et al. Effect of Er3+ concentration on spectral characteristic and 2.79 μm laser performance of Er∶YSGG crystal[J]. Journal of Luminescence, 2020, 226: 117502.

[63] SONG M J, WANG L T, ZHAO M L, et al. Optical spectroscopy, 1.5 μm emission and up-conversion properties of Er3+-doped Li3Ba2Gd3(MoO4)8 crystal[J]. Journal of Luminescence, 2011, 131(8): 1571-1576.

[64] HMMERICH U, NYEIN E E, TRIVEDI S B. Crystal growth, upconversion, and infrared emission properties of Er3+-doped KPb2Br5[J]. Journal of Luminescence, 2005, 113(1/2): 100-108.

李琳, 谭慧瑜, 郑为比, 谭俊成, 李真, 张沛雄, 陈振强. Er掺杂CGA晶体的生长及浓度优化研究[J]. 人工晶体学报, 2023, 52(7): 1325. LI Lin, TAN Huiyu, ZHENG Weibi, TAN Juncheng, LI Zhen, ZHANG Peixiong, CHEN Zhenqiang. Growth and Concentration Optimization of Er-Doped CGA Crystals[J]. Journal of Synthetic Crystals, 2023, 52(7): 1325.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!