硅酸盐通报, 2022, 41 (11): 3945, 网络出版: 2022-12-26  

Na+浓度对化学增强钠铝硅酸盐玻璃性能的影响

Effect of Na+ Concentration on Properties of Chemical Strengthened Sodium Aluminosilicate Glass
作者单位
中国建筑材料科学研究总院有限公司,北京 100024
摘要
熔盐中少量的Na+并不会对玻璃的离子交换效果产生明显影响,但当熔盐中Na+浓度不断增大时,化学增强钠铝硅酸盐玻璃的性能开始受到影响。本文采用一步法离子交换工艺研究了熔盐中Na+浓度对不同厚度化学增强钠铝硅酸盐玻璃表面压应力、应力层深度和弯曲强度等性能的影响。研究表明:熔盐中Na+浓度不断增大时,化学增强钠铝硅酸盐玻璃的表面压应力、弯曲强度下降;弯曲强度下降最多可达175 MPa,此时玻璃的表面压应力下降了57.4 MPa;熔盐中Na+浓度变化未对化学增强钠铝硅酸盐玻璃的应力层深度和可见光透过率产生明显影响。
Abstract
Marginal Na+ concentration in molten salt has not significant effects on ionexchange process of glass. However, when the Na+ concentration in the molten salt continues to increase, the performance of chemical strengthened sodium aluminosilicate glass begins to be affected. To overcome this issue, onestep ionexchange process was developed to reaserch chemical strengthened sodium aluminosilicate glass with different thickness. Effect of Na+ concentration in molten salt on surface compressive stress, depth of layer and bending strength of chemical strengthened sodium aluminosilicate glass were investigated. The results demonstrate that the surface compressive stress and bending strength of chemical strengthened sodium aluminosilicate glass decrease when the Na+ concentration in molten salt increases. The bending strength decreases by up to 175 MPa, while the surface compressive stress decreases by 57.4 MPa. The change of Na+ concentration in molten salt has not obviously effects on the depth of layer and visible light transmittance of chemical strengthened sodium aluminosilicate glass.
参考文献

[1] MACRELLI G, VARSHNEYA A K, MAURO J C. Simulation of glass network evolution during chemical strengthening: resolution of the subsurface compression maximum anomaly[J]. Journal of NonCrystalline Solids, 2019, 522: 119457.

[2] SVENSON M N, THIRION L M, YOUNGMAN R E, et al. Effects of thermal and pressure histories on the chemical strengthening of sodium aluminosilicate glass[J]. Frontiers in Materials, 2016, 3: 14.

[3] KARLSSON S, JONSON B, STLHANDSKE C. The technology of chemical glass strengthening: a review[J]. Glass Technology: European Journal of Glass Science and Technology Part A, 2010, 51(2): 4154.

[4] 姜良宝,厉 蕾,张官理,等.化学强化铝硅酸盐玻璃研究进展[J].材料工程,2014,42(10):106112.

[5] 廖伟帆,胡传杰,王明忠,等.超薄铝硅玻璃离子交换工艺研究[J].硅酸盐通报,2022,41(4):11631169.

[6] MACRELLI G. Chemically strengthened glass by ion exchange: strength evaluation[J]. International Journal of Applied Glass Science, 2018, 9(2): 156166.

[7] CUI J D, CAO X, SHI L F, et al. The effect of substitution of Al2O3 and B2O3 for SiO2 on the properties of cover glass for liquid crystal display: structure, thermal, viscoelastic, and physical properties[J]. International Journal of Applied Glass Science, 2021, 12(3): 443456.

[8] 胡 伟,谈宝权,覃文城,等.化学强化玻璃的发展现状及研究展望[J].玻璃与搪瓷,2018,46(3):4450.

[9] BERNESCHI S, RIGHINI G C, PELLI S. Towards a glass new world: the role of ionexchange in modern technology[J]. Applied Sciences, 2021, 11(10): 4610.

[10] SGLAVO V M, TALIMIAN A, OCSKO N. Influence of salt bath calcium contamination on soda lime silicate glass chemical strengthening[J]. Journal of NonCrystalline Solids, 2017, 458: 121128.

[11] 闫建华,段正康,章泽成,等.玻璃化学强化用硝酸钾盐浴失活原因分析[J].硅酸盐通报,2015,34(2):438443.

[12] HASSANI H, SGLAVO V M. Effect of Na contamination on the chemical strengthening of sodalime silicate float glass by ionexchange in molten potassium nitrate[J]. Journal of NonCrystalline Solids, 2019, 515: 143148.

[13] 刘沈龙.离子交换增强技术中熔盐添加剂作用的研究[D].北京:中国建筑材料科学研究总院,2013.

[14] 代 干,张振华,孟 强,等.熔盐成分对高铝玻璃化学钢化性能的影响[J].玻璃,2018,45(8):3237.

[15] 江启洪.超薄高铝盖板玻璃强化性能与Na+浓度关系研究[J].科技创新与应用,2022,12(10):7578.

[16] PRIETOBLANCO X, MONTEROORILLE C. Theoretical modelling of ion exchange processes in glass: advances and challenges[J]. Applied Sciences, 2021, 11(11): 5070.

[17] TALIMIAN A, SGLAVO V M. Glass: chemical and thermal strengthening[M]//Encyclopedia of Materials: Technical Ceramics and Glasses. Amsterdam: Elsevier, 2021: 632646.

[18] 张向晨,何欧里,徐曾祚,等.KNO3熔盐中杂质离子对玻璃离子交换和增强的影响[J].硅酸盐学报,1985,13(1):1928.

[19] 王衍行,李现梓,杨鹏慧,等.玻璃离子交换的研究进展[J].硅酸盐学报,2022,50(8):22572269.

[20] MAASS P. Towards a theory for the mixed alkali effect in glasses[J]. Journal of NonCrystalline Solids, 1999, 255(1): 3546.

[21] LIU S M, ZHAO G L, YING H, et al. Effects of mixed alkaline earth oxides additive on crystallization and structural changes in borosilicate glasses[J]. Journal of NonCrystalline Solids, 2008, 354(10/11): 956961.

[22] CRANK J. The mathematics of diffusion[M]. 2nd ed. Oxford: Clarendon Press, 1979.

[23] TAGANTSEV D K. Ionexchange processing of glasses under nonisothermal conditions[J]. Journal of NonCrystalline Solids, 1999, 243(2/3): 185191.

[24] WANG M T, CHENG J S. Viscosity and thermal expansion of rare earth containing sodalimesilicate glass[J]. Journal of Alloys and Compounds, 2010, 504(1): 273276.

田昊东, 徐驰, 吴志远, 周绍骏, 祖成奎. Na+浓度对化学增强钠铝硅酸盐玻璃性能的影响[J]. 硅酸盐通报, 2022, 41(11): 3945. TIAN Haodong, XU Chi, WU Zhiyuan, ZHOU Shaojun, ZU Chengkui. Effect of Na+ Concentration on Properties of Chemical Strengthened Sodium Aluminosilicate Glass[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(11): 3945.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!