光谱学与光谱分析, 2023, 43 (8): 2325, 网络出版: 2024-01-10  

表面增强拉曼散射信号长程探测研究进展

Research Progress in Long-Range Detection of Surface-Enhanced Raman Scattering Signals
作者单位
重庆邮电大学光电工程学院, 光电信息感测与传输技术重庆重点实验室, 重庆 400065
摘要
表面增强拉曼散射(SERS)技术具有灵敏度高、 检测速度快、 能够实时分析等优势, 广泛应用于医疗、 生物、 食品安全、 环境监测等领域。 目前SERS信号探测方式主要有单点探测、 长程探测两种方式。 由于存在样品分子分布不均、 激光光斑探测范围有限等因素干扰, 单点探测方式的重复性易受到影响。 为了弥补单点探测的不足, 近年来以光波导和光纤为载体的拉曼信号长程探测被大量研究。 归纳总结了近几年SERS信号长程探测的研究进展, 并分析了当前长程探测方式面临的挑战和未来发展趋势。 首先, 介绍了单点探测和长程探测基本原理。 其次, 介绍了基于光纤的SERS信号长程探测研究进展。 基于光纤的SERS信号长程探测方式包括空心光纤和实心光纤两类。 基于空心光纤的SERS信号长程探测方式采用空心光纤作为液体输运与信号传输的复合通道, 具有厘米量级的有效探测距离以及较高灵敏度, 但该探测方式进样困难且复合通道内待测样本分子不易彻底清洗; 基于实心光纤的SERS信号长程探测, 通常使用物理或化学手段对实心光纤的固有结构进行处理, 探测距离一般在微米至毫米量级, 该类型的制作难度相对较高。 然后概述了基于光波导的SERS信号长程探测研究情况。 基于液芯光波导的SERS信号长程探测方式将微流体与SERS相结合, 可有效增加样品分子与SERS“热点”的接触面积, 提高其探测灵敏度。 该方式可达到单分子检测水平, 但在微通道中制备增强介质存在困难。 基于固体光波导的SERS信号长程探测目前大多处于理论分析阶段, 常通过仿真软件对SERS长程探测结构进行研究分析, 探明其作用过程机理。 最后, 对SERS信号长程探测方式研究进展进行了总结和展望, 并提出可行的研究建议, 为SERS信号长程探测相关研究提供参考依据。
Abstract
Surface-enhanced Raman scattering (SERS) technology has the advantages of high sensitivity, fast detection speed, and real-time analysis and is widely used in medical, biological, food safety, environmental monitoring and other fields. Currently, the detection methods of SERS signals of sample molecules mainly include single-point and long-range detection. The repeatability of the single-point detection method is easily affected due to the uneven distribution of sample molecules and the limited detection range of the laser spot. In order to make up for the deficiency of single-point detection, the long-range detection of Raman signals based on optical waveguides and optical fiber has been studied extensively in recent years. This paper summarizes the research progress of long-range detection of SERS signals in recent years and analyzes current long-range detection methods challenges and future development trends of current long-range methods. Firstly, this paper introduces the basic principles of single-point detection and long-range detection. On this basis, the research progress of long-range detection of SERS signals based on optical fiber is introduced. The long-range detection methods of SERS signals based on optical fiber include hollow fiber and solid fiber. The long-range detection method of SERS signals based on hollow optical fiber uses hollow optical fiber as the composite channel for liquid transport and signal transmission, which has an effective detection distance of centimeter order and high sensitivity. However, the detection method is difficult to inject, and the molecules of the sample to be measured in the composite channel are not easy to clean thoroughly; The long-range detection method of SERS signals based on solid fiber usually uses physical or chemical means to process the inherent structure of the solid fiber, and the detection distance is generally in the order of micrometers to millimeters, which is relatively difficult to manufacture. Then, the research status of long-range detection of SERS signals based on optical waveguides is summarized. The long-range detection of SERS signals based on liquid-core optical waveguides combines microfluidics with SERS, which can effectively increase the contact area between sample molecules and SERS “hot spots” and improve its detection sensitivity. This method can reach the level of single-molecule detection, but there are difficulties in preparing enhanced media in microchannels. Most of the long-range detection of SERS signals based on solid-state optical waveguides is currently in the theoretical analysis stage, and the long-range detection structure of SERS is often studied and analyzed through simulation software to explore its process mechanism. Finally, the research progress on the long-range detection of SERS signals is summarized and prospected, and feasible research suggestions are put forward to provide a reference for the related research on the long-range detection of SERS signals.
参考文献

[1] Fleischmann M, Hendra P J, Mcquillan A J. Chemical Physics Letters, 1974, 26(2): 163.

[2] Jeanmaire D L, Van Duyne R P. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977, 84(1): 1.

[3] Li W Y, Camargo P H C, Lu X M, et al. Nano Letters, 2009, 9(1): 485.

[4] LeRu E C, Blackie E, Meyer M, et al. Journal of Physical Chemistry C, 2007, 111(37): 13794.

[5] Kneipp K, Kneipp H. Applied Spectroscopy, 2006, 60(12): 322A.

[6] Kim H M, Kim D M, Jeong C, et al. Scientific Reports, 2018, 8(1): 13938.

[7] Jia M, Li S M, Zang L G, et al. Nanomaterials, 2018, 8(9): 730.

[8] Chen W W, Lin J, Chen R, et al. . Laser Physics Letters, 2015, 12(4): 045602.

[9] Zhao J, Liu Y, Fales A M, et al. Drug Testing & Analysis, 2015, 6(10): 1063.

[10] Guo Z N, Hwang J, Zhao B, et al. Analyst, 2014, 139(4): 807.

[11] Liyanage T, Rael A, Shaffer S, et al. Analyst, 2018, 143(9): 2012.

[12] Albrecht M G, Creighton J A. Journal of the American Chemical Society, 1977, 99(15): 5215.

[13] Jensen L, Aikens C M, Schatz G C. Chemical Society Reviews, 2008, 37(5): 1061.

[14] Lee S, Mayer K M, Hafner J H. Analytical Chemistry, 2009, 81(11): 4450.

[15] Beck F J, Polman A, Catchpole K R. Journal of Applied Physics, 2009, 105(11): 114310.

[16] Sarid D. Physical Review Letters, 1982, 48(6): 446.

[17] Méjard R, Dostálek J, Huang C J, et al. Optical Materials, 2013, 35(12): 2507.

[18] Geng Y F, Xu Y W, Tan X L, et al. Sensors, 2018, 18(6): 1726.

[19] Chu Q, Jin Z Q, Yu X T, et al. Optics Express, 2019, 27(7): 10370.

[20] Li S Y, Xia L, Li W, et al. Applied Optics, 2019, 58(29): 7929.

[21] Gao D H, Yang X H, Teng P P, et al. Optics Letters, 2019, 44(21): 5173.

[22] Eravuchira P J, Banchelli M, DAndrea C, et al. Journal of Biomedical Optics, 2020, 25(7): 077001.

[23] Mu Y Y, Liu M, Li J J, et al. Optics Letters, 2021, 46(6): 1369.

[24] Merdalimova A A, Rudakovskaya P, Ermatov T, et al. Biosensors, 2022, 12(1): 19.

[25] Sivapalan S T, Devetter B M, Yang T K, ACS Nano, 2013, 7(3): 2099.

[26] Zhang X L, Zhang J, Chen S M, et al. Carbon, 2016, 100: 395.

[27] Niu W X, Chua Y A, Zhang W Q, et al. Journal of the American Chemical Society, 2015, 137(33): 10460.

[28] Chen Z Y, Dai Z M, Chen N, et al. IEEE Photonics Technology Letters, 2014, 26(8), 777.

[29] Yin Z, Geng Y F, Xie Q L, et al. Applied Optics, 2016, 55(20): 5408.

[30] Yin Z, Geng Y F, Li X J, et al. IEEE Photonics Journal, 2016, 8(3): 6803607.

[31] Zhao C Q, Chen N, Liu S P, et al. Journal of Physics Conference, Series, 2017, 844(1): 012055.

[32] Yu M, Tian Q H, He G Y, et al. Advanced Fiber Materials, 2021, 3(6): 349.

[33] Wang Z K, Yu Z N, Wang N, et al. Optics Letters, 2021, 46(17): 4300.

[34] Choi J, Lee K S, Jung J H, et al. RSC Advances, 2015, 5(2): 922.

[35] Wang C Y, Xu Y, Wang R, et al. Microsystem Technologies, 2017, 23(8): 3059.

[36] Lai C H, Chen G, Chen L, et al. Applied Spectroscopy, 2017, 71(8): 2021.

[37] Zhang C, Dou X Y, Zhang J, et al. Optics Express, 2019, 27(24): 35555.

[38] Tang F, Adam P M, Boutami S. Optics Express, 2016, 24(19): 21244.

[39] Tang F, Boutami S, Adam P M. ACS Omega, 2018, 3(4): 4017.

[40] Chen J, Wang X X, Tang F, et al. Results in Physics, 2020, 16: 102867.

[41] Li S Y, Xia L, Yang Z, et al. Applied Optics, 2020, 59(3): 748.

[42] Li S Y, Zuo G M, Wu N S, et al. Optics & Laser Technology, 2021, 143: 107259.

[43] Li S Y. Wu N S. Wang Z Y. et al. Results in Physics, 2023, 45: 106247.

赖春红, 张芝峻, 文靖, 曾诚, 张琦. 表面增强拉曼散射信号长程探测研究进展[J]. 光谱学与光谱分析, 2023, 43(8): 2325. LAI Chun-hong, ZHANG Zhi-jun, WEN Jing, ZENG Cheng, ZHANG Qi. Research Progress in Long-Range Detection of Surface-Enhanced Raman Scattering Signals[J]. Spectroscopy and Spectral Analysis, 2023, 43(8): 2325.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!