Opto-Electronic Advances, 2023, 6 (7): 230007, Published Online: Sep. 25, 2023  

Deep-red and near-infrared organic lasers based on centrosymmetric molecules with excited-state intramolecular double proton transfer activity

Author Affiliations
1 Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
2 Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
3 Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
Abstract
Organic lasers that emit light in the deep-red and near-infrared (NIR) region are of essential importance in laser communication, night vision, bioimaging, and information-secured displays but are still challenging because of the lack of proper gain materials. Herein, a new molecular design strategy that operates by merging two excited-state intramolecular proton transfer-active molecules into one excited-state double proton transfer (ESDPT)-active molecule was demonstrated. Based on this new strategy, three new materials were designed and synthesized with two groups of intramolecular resonance-assisted hydrogen bonds, in which the ESDPT process was proven to proceed smoothly based on theoretical calculations and experimental results of steady-state and transient spectra. Benefiting from the effective six-level system constructed by the ESDPT process, all newly designed materials showed low threshold laser emissions at approximately 720 nm when doped in PS microspheres, which in turn proved the existence of the second proton transfer process. More importantly, our well-developed NIR organic lasers showed high laser stability, which can maintain high laser intensity after 12000 pulse lasing, which is essential in practical applications. This work provides a simple and effective method for the development of NIR organic gain materials and demonstrates the ESDPT mechanism for NIR lasing.

Chang-Cun Yan, Zong-Lu Che, Wan-Ying Yang, Xue-Dong Wang, Liang-Sheng Liao. Deep-red and near-infrared organic lasers based on centrosymmetric molecules with excited-state intramolecular double proton transfer activity[J]. Opto-Electronic Advances, 2023, 6(7): 230007.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!