Author Affiliations
Abstract
1 Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
2 Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
3 Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
Organic lasers that emit light in the deep-red and near-infrared (NIR) region are of essential importance in laser communication, night vision, bioimaging, and information-secured displays but are still challenging because of the lack of proper gain materials. Herein, a new molecular design strategy that operates by merging two excited-state intramolecular proton transfer-active molecules into one excited-state double proton transfer (ESDPT)-active molecule was demonstrated. Based on this new strategy, three new materials were designed and synthesized with two groups of intramolecular resonance-assisted hydrogen bonds, in which the ESDPT process was proven to proceed smoothly based on theoretical calculations and experimental results of steady-state and transient spectra. Benefiting from the effective six-level system constructed by the ESDPT process, all newly designed materials showed low threshold laser emissions at approximately 720 nm when doped in PS microspheres, which in turn proved the existence of the second proton transfer process. More importantly, our well-developed NIR organic lasers showed high laser stability, which can maintain high laser intensity after 12000 pulse lasing, which is essential in practical applications. This work provides a simple and effective method for the development of NIR organic gain materials and demonstrates the ESDPT mechanism for NIR lasing.
excited-state intramolecular proton transfer organic laser near-infrared emission molecular design 
Opto-Electronic Advances
2023, 6(7): 230007
作者单位
摘要
首都师范大学化学系光功能材料与器件北京市重点实验室,北京 100048
兼具高效发光和电荷传输特性的有机半导体是实现有机电泵浦激光的理想候选材料,但其分子设计与合成面临着巨大挑战。高载流子传输和高效固态发光效率之间存在着天然的矛盾,这是因为高载流子传输要求分子紧密堆积并具有强的分子间相互作用,但这种相互作用会显著降低固态发光效率。本文综述了近年来报道的兼具电荷传输特性和高发光效率的联苯衍生物的研究进展,重点介绍了约20余种基于联苯衍生物的有机半导体材料,包括分子的设计策略、相关的光电性能及其在光电器件方面的应用,为兼具高电荷传输特性和高发光效率的有机半导体材料的研究提供了指导和借鉴,同时为发展与实现有机电泵浦激光奠定了材料基础。本文还对该领域未来发展的挑战、方向及机遇进行了简单评述。
材料 联苯衍生物 光电集成 电荷传输 发光效率 有机电泵浦激光 
中国激光
2023, 50(1): 0113006
作者单位
摘要
电子科技大学中山学院,广东 中山 528402
金属触点引起的光学损耗被认为是阻碍电泵浦有机激光器发展的主要障碍。本文对于存在金属接触电极的有机薄膜,通过设计适当的分布反馈结构形成多通道发射和表面等离子体激元(SPs),从而实现光泵浦激光。与采用无金属接触电极的有机薄膜进行对比,结果表明,本文方法可实现更好的激光性能。利用本文设计的结构,在740 nm光栅结构的Ag衬底上实现了(0.026 mJ/pulse)的激光发射。由于本文设计方法没有增加器件厚度,所以当光学性能得到改善时,电性能并没有降低。
有机激光 表面等离子体 光栅耦合 organic laser surface plasmons grating coupling 
中国光学
2020, 13(4): 866
作者单位
摘要
电子科技大学 中山学院,广东 中山 528402
采用DFB分布反馈结构的有机激光由于其自身优点备受关注,而利用高阶布拉格反馈的多光束有机激光及其原理鲜有报道。不同于以往的低阶布拉格反馈形成单波导或单光束激光,本文通过在平面有机半导体波导引入高阶布拉格反馈分别制备了红色和蓝色多束有机激光器。利用四阶布拉格反馈和PVK∶DCJTI薄膜实现三光束红光激光器,出射角度为±53°和05°。利用五阶布拉格反馈和PS∶DSA-ph薄膜实现四光束蓝光激光器,出射角度为±18° 和±75°。融合平面波导与光栅耦合的机理,研究了高阶布拉格光栅反馈与器件特性之间的关系。结果表明,理论计算的光束耦合角度和实际测试相符,结果在一定程度上为多光束有机激光器件的设计提供了参考。
有机激光 布拉格衍射 光栅耦合 organic laser Bragg scattering grating coupling 
中国光学
2018, 11(4): 576
作者单位
摘要
1 曲阜师范大学 物理工程学院, 山东 曲阜 273165
2 中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室, 吉林 长春 130033
本文报道了基于液晶/聚合物光栅的可调谐双波长有机激光器的制备, 并研究了激光器出射激光的电调谐以及周期调谐性能。利用激光染料4-二氰亚甲基-2-甲基-6-对-二甲基氨基苯乙烯-4H-吡喃(DCM)和有机半导体材料聚[2-甲氧基-5-(2-乙基己氧基)-1,4-苯乙炔](MEH-PPV)同时作为增益介质, 液晶/聚合物光栅作为谐振腔得到可调谐双波长有机激光器, 对激光器施加电压或者改变液晶/聚合物光栅的周期可调谐激光器的出射波长。双波长有机激光器从DCM和MEH-PPV中出射的激光波长分别为608.3 nm和632.1 nm, 在外加电场的作用下, 出射激光波长分别蓝移了96 nm和1.7 nm。随着光栅周期从394 nm增加到406 nm, 出射激光波长分别红移了18.4 nm和19.2 nm。本工作为可调谐有机双波长激光器的研究提供了有益的指导和借鉴意义。
双波长 有机激光器 液晶/聚合物光栅 电调谐 dual-wavelength organic laser holographic polymer dispersed liquid crystal grati electrical tuning 
液晶与显示
2018, 33(1): 49

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!