大气与环境光学学报, 2022, 17 (2): 267, 网络出版: 2022-07-22  

基于CALIOP和MODIS的北极地区海雾检测研究

Arctic sea fog detection using CALIOP and MODIS
陈标 1,*吴东 1,2
作者单位
1 中国海洋大学信息科学与工程学院, 山东 青岛 266100
2 青岛海洋科学与技术试点国家实验室区域海洋动力学与数值模拟功能实验室, 山东 青岛 266200
摘要
极地地区的海雾给极地科考和海冰研究带来了挑战, 但由于相关监测数据较少, 因此对极地地区海雾的研究还相对匮乏。基于 CALIOP 传感器可以观测垂直方向上云雾信息的特性, 使用准同步观测的 MODIS 中分辨率成像光谱仪对北极地区的云雾信息进行分析。首先使用深度神经网络模型反演云顶高度, 再根据云高确定是否为海雾。并且就不同波段对反演结果的影响进行了分析。结果显示使用深度神经网络反演的云顶高度平均绝对误差要比传统方法的结果低 1774.280 m, 可以更好地对云顶高度进行反演, 提高了海雾检测精度。
Abstract
Sea fog in polar regions poses a challenge to the research on polar science and sea ice. However, due to the lack of relevant cloud monitoring data in the polar region, the research on sea fog in polarregions is still relatively scare. Based on the CALIOP sensor′s ability to observe cloud information in the vertical direction, the MODIS medium resolution imaging spectrometer with plesiochronous observation is used to analyze cloud information in the Arctic region. Firstly, the deep neural network model is applied to invert the cloud top height. Then, according to the inverted cloud top height, whether it is sea fog can be ascertained. Furthermore, the influence of different wavebands on the inversion results is also analyzed. The results show that the average absolute error of the cloud top height inverted by the deep neural network is 1774.280 m lower than that of the traditional method, indicating that using deep neural network model can invert cloud top height better and more accurately, which can improve the detection accuracy of sea fog.
参考文献

[1] Wu D, Hu Y X, Mccormick M P, et al. Global cloud-layer distribution statistics from 1 year CALIPSO lidar observations[J]. International Journal of Remote Sensing, 2011, 32(5): 1269-1288.

[2] Zhao J C, Wu D, Zhao Y T. A method for sea fog detection using CALIOP data[J]. Periodical of Ocean University of China, 2017, 47(12): 9-15.

[3] Gu Y, Li P, Liu J, et al. Analysis on engineering geological survey of Arctic submarine cable routing[J]. Ocean Development and Management, 2020, 37(1): 10-14.

[4] Ellrod G P. Advances in the detection and analysis of fog at night using GOES multispectral infrared imagery[J]. Weather and Forecasting, 1995, 10(3): 606-619.

[5] Koracin D, Dorman C E, Lewis J M, et al. Marine fog: A review[J]. Atmospheric Research, 2014, 143: 142-175.

[6] Lee T F, Turk F J, Richardson K. Stratus and fog products using GOES-8-9 3.9 μm data[J]. Weather and Forecasting, 1997, 12(3): 664-677.

[7] Zhang S P, Yi L. A comprehensive dynamic threshold algorithm for daytime sea fog retrieval over the Chinese adjacent seas[J]. Pure and Applied Geophysics, 2013, 170(11): 1931-1944.

[8] Yi L, Li K F, Chen X Y, et al. Arctic fog detection using infrared spectral measurements[J]. Journal of Atmospheric and Oceanic Technology, 2019, 36(8): 1643-1656.

[9] Wang Z, Teng J, Cai W, et al. Yellow sea fog extraction method based on GOCI image[J]. Marine Environmental Science, 2018, 37(6): 941-946.

[10] Heo K Y, Park S, Ha K. J, et al. Algorithm for sea fog monitoring with the use of information technologies[J]. Meteorological Applications, 2014, 2(21): 350-359.

[11] Lee J, Chung C, Ou M. Fog detection using geostationary satellite data: Temporally continuous algorithm[J]. Asia-Pacific Journal of Atmospheric Sciences, 2011, 47(2): 113-122.

[12] Yi L, Thies B, Zhang S P, et al. Optical thickness and effective radius retrievals of low stratus and fog from MTSAT daytime data as a prerequisite for Yellow Sea fog detection[J]. Remote Sensing, 2016, 8(1): 8.

[13] Yi L, Zhang S P, Thies B, et al. Spatio-temporal detection of fog and low stratus top heights over the Yellow Sea with geostationary satellite data as a precondition for ground fog detection—A feasibility study[J]. Atmospheric Research, 2015, 151: 212-223.

[14] Bendix J, Thies B, Cermak J, et al. Ground fog detection from space based on MODIS daytime data-A feasibility study[J]. Weather and Forecasting, 2005, 20(6): 989-1005.

[15] Marchand R, Ackerman T, Smyth M, et al. A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS[J]. Journal of Geophysical Research-Atmospheres, 2010, 115(D16): D16206.

[16] Weisz E, Li J, Menzel W P, et al. Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals[J]. Geophysical Research Letters, 2007, 34(17) : L17811.

[17] Gultepe I, Pagowski M, Reid J. A satellite-based fog detection scheme using screen air temperature[J]. Weather and Forecasting, 2007, 22(3): 444-456.

[18] Hakansson N, Adok C, Thoss A, et al. Neural network cloud top pressure and height for MODIS[J]. Atmospheric Measurement Techniques, 2018, 11(5): 3177-3196.

[19] Kox S, Bugliaro L, Ostler A. Retrieval of cirrus cloud optical thickness and top altitude from geostationary remote sensing[J]. Atmospheric Measurement Techniques, 2014, 7(10): 3233-3246.

[20] Meng H, Yang Z, Guo H T. Research and analysis on cloud top height Inversion technology based on neural network[J]. Journal of Jinling Institute of Technology, 2019, 35(2): 34-39.

[21] Daegeun S, Kim J H. A new application of unsupervised learning to nighttime sea fog detection[J]. Asia-Pacific Journal of Atmospheric Sciences, 2018, 54(4): 527-544.

[22] Zhu C Y, Wang J H, Liu S W, et al. Sea fog detection using U-Net deep learning model based on MODIS data[J]. 10th Workshop On Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing, 2019: 1-5.

[23] Liu S, Yi L, Zhang S, P, et al. A study of daytime sea fog retrieval over the Yellow Sea based on fully convolutional networks[J]. Transactions of Oceanology and Limnology, 2019, 6: 13-22.

[24] Mcgill M J, Vaughan M A, Trepte C R, et al. Airborne validation of spatial properties measured by the CALIPSO lidar[J]. Journal of Geophysical Research-Atmospheres, 2007, 112(D20): D20201.

[25] Liu Z. Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data[J]. Journal of Geophysical Research, 2004, 109(D15): D15202.

[26] Wu D, Lu B, Zhang T C, et al. A method of detecting sea fogs using CALIOP data and its application to improve MODIS-based sea fog detection[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 153: 88-94.

[27] Wei S X. Application of CALIOP in MODIS Based Sea Fog Detection Abstract[D]. Qingdao: Ocean University of China, 2013.

[28] Zhang P, Wu D. Daytime sea fog detection method using Himawari-8 data[J]. Journal of Atmospheric and Environmental Optics, 2019, 14(3): 211-220.

[29] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[J]. IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.

[30] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. In Proceedings of the 32nd International Conference on International Conference on Machine Learning, 2015: 448-456.

陈标, 吴东. 基于CALIOP和MODIS的北极地区海雾检测研究[J]. 大气与环境光学学报, 2022, 17(2): 267. CHEN Biao, WU Dong. Arctic sea fog detection using CALIOP and MODIS[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(2): 267.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!