激光技术, 2022, 46 (6): 779, 网络出版: 2023-02-04  

紧聚焦激光中电子轨迹及空间辐射的非对称性

The asymmentry of the electron trajectory and spatial radiation in tightly focused laser
作者单位
南京邮电大学 理学院, 南京 210023
摘要
为了探究不同对撞中心下与紧聚焦圆偏振高斯激光对撞的单个运动电子的3维轨迹和空间辐射特性, 基于激光与电子相互作用及非线性汤姆逊散射的理论框架, 建立模型进行了数值模拟, 并对数值结果进行了可视化分析。结果表明, 电子运动轨迹振幅在λ0处达到0.151752λ0(λ0=1μm)的峰值, 而在-λ0处达到0.151662λ0的谷值, 呈现非对称性; 电子的最大辐射角和辐射强度随对撞中心位置具有周期性变化的规律; 辐射脉冲产生的全时段中, 脉冲出现最大峰值的主峰和峰值略低的次峰现象。该研究结果为新一代X射线发生器的建设提供了理论基础。
Abstract
To study the 3-D trajectory and spatial radiation characteristics of collisional moving electrons of closely focused circularly polarized Gaussian pulses with different collision centers, a numerical simulation within the framework of laser-electron interaction and nonlinear Thomson scattering was performed. The results show that, the amplitude of the motion trajectory reaches to the peak value of 0.151752λ0(λ0=1μm) at the position of λ0, whereas the valley value is 0.151662λ0 at the position of -λ0, presenting a asymmetry. Through visual display and numerical results, the law of the maximum radiation angle and radiation intensity of electron radiation changing with the collision center was described. Finally, the variation of radiation pulses was studied. The pulse with a primary peak and a sub peak over time was discovered. This research provides a rationale for the building of new generations of X-ray detectors.
参考文献

[1] MAINE P, STRICKLAND D, BADO P, et al. Generation of ultrahigh peak power pulses by chirped pulse amplification[J]. IEEE Journal of Quantum Electronics, 1988, 24(2): 398-403.

[2] PERRY M,MOUROU G. Terawatt to petawatt subpicosecond lasers[J]. Science, 1994, 264(5161): 917-924.

[3] EIDAM T, HANF S, SEISE E, et al. Femtosecond fiber cpa system emitting 830W average output power[J]. Optics Letters,2010,35(2): 94-96.

[4] MOUROU G, BARTY C, PERRY M. Ultrahigh-intensity laser: Physics of the extreme on a tabletop[J].Physics Today, 1998, 51(1): 22-28.

[5] CORKUM P, KRAUSZ F. Attosecond science[J]. Nature Physics, 2007, 3(6): 381-387.

[6] KRAUSZ F, IVANOV M. Attosecond physics[J]. Reviews of Mo-dern Physics, 2009, 81(1): 163-205.

[7] POGORELSKY I, BEN-ZVI I, HIROSE T, et al. Demonstration of 8×1018 photons/second peaked at 1.8 in a relativistic thomson sca-ttering experiment[J]. Physical Review Special Topics- Accelerators and Beams, 2000, 3(9): 090702.

[8] SAKAI I, AOKI T, DOBASHI K, et al. Production of high brightness γ rays through backscattering of laser photons on high-energy electrons[J]. Physical Review Special Topics-Accelerators and Beams, 2003, 6(9): 091001.

[9] YAN W, FRUHLING C, GOLOVIN G, et al. High-order multiphoton thomson scattering[J]. Nature Photonics, 2017, 11(8): 514-520.

[10] SUORTTI P,THOMLINSON W. Medical applications of synchrotron radiation[J]. Physics in Medicine & Biology, 2003, 48(13): R1.

[11] CHI Z, DU Y, HUANG W, et al. Linearly polarized X-ray fluorescence computed tomography based on a thomson scattering light source: A monte carlo study[J]. Journal of Synchrotron Radiation, 2020, 27(3): 737-745.

[12] KHRENNIKOV K, WENZ J, BUCK A, et al. Tunable all-optical quasimonochromatic thomson X-ray source in the nonlinear regime[J]. Physical Review Letters, 2015, 114(19): 195003.

[13] ZHUANG J, YAN Y, ZHOU X, et al. Quasi-monochromatic spectral emission characteristics from elec-tron collision with tightly focused laser pulses[J]. Laser Physics, 2021, 31(3): 035401.

[14] MIKHAILOVA Y, PLATONENKO V, RYKOVANOV S. Generation of an attosecond X-ray pulse in a thin film irradiated by an ultrashort ultrarelativistic laser pulse[J]. Journal of Experimental and Theore-tical Physics Letters, 2005, 81(11): 571-574.

[15] PHUOC K, CORDE S, THAURY C, et al. All-optical compton gamma-ray source[J]. Nature Photonics, 2012, 6(5): 308-311.

[16] LEE K, CHUNG S, PARK S, et al. Effects of high-order fields of a tightly focused laser pulse on rela-tivistic nonlinear thomson scattered radiation by a relativistic electron[J]. EPL (Europhysics Letters), 2010, 89(6): 64006.

[17] BALTUKA A, UDEM T, UIBERACKER M, et al. Attosecond control of electronic processes by intense light fields[J]. Nature, 2003, 421(6923): 611-615.

[18] WANG H R, XIA F Y, TIAN Y W. Simulation calculation of the influence of pulse width on the peak radiation of laser impact electron[J/OL].(2021-06-08).https://kns.cnki.net/kcms/detail/51.1125.tn.20210608.1356.006.html (in Chinese).

[19] YAN Y L, ZHOU X, REN Sh L, et al. Influence of electron’s initial position on spatial radiation of high-energy electrons[J/OL]. (2021-06-29).https://kns.cnki.net/kcms/detail/51.1125.tn.20210629.1330.006.html (in Chinese).

[20] LEE K, CHA Y, SHIN M, et al. Relativistic nonlinear thomson scattering as attosecond X-ray source[J]. Physical Review, 2003, E67(2): 026502.

[21] ZHENG J, SHENG Z, ZHANG J, et al. Parameters that influenee the nonlinear thomson scattering of single electrons in high-intensity laser fields[J]. Acta Physica Sinica, 2005, 54(3): 1018-1035(in Chinese).

[22] VAIS O, BOCHKAREV S, BYCHENKOV V. Nonlinear thomson scattering of a relativistically strong tightly focused ultrashort laser pulse[J]. Plasma Physics Reports, 2016, 42(9): 818-833.

[23] LI K, LI L, SHU Q, et al. Spatial characteristics of motion and emission from electron driven by linearly polarized tightly focused laser pulses[J]. Optik, 2019, 183: 813-817.

[24] WANG Y, WANG C, LI K, et al. Spatial radiation features of thomson scattering from electron in circularly polarized tightly focused laser beams[J]. Laser Physics Letters, 2020, 18(1): 15303.

[25] BAUER D, MULSER P, STEEB W H. Relativistic ponderomotive force, uphill acceleration, and transition to chaos[J]. Physical Review Letters, 1995, 75(25): 4622.

[26] CHEN Z, QIN H, CHEN X, et al. Spatial radiation features of circularly polarized tightly focused laser beams colliding with electrons[J]. Laser Physics, 2021, 31(7): 075401.

[27] SHENG Z M. Advances in high field laser physics[M].Shanghai: Shanghai Jiao Tong University Press, 2014: 4-18(in Chinese).

申雨婷, 张家晨, 常一凡, 徐瑞杰, 田友伟. 紧聚焦激光中电子轨迹及空间辐射的非对称性[J]. 激光技术, 2022, 46(6): 779. SHEN Yuting, ZHANG Jiachen, CHANG Yifan, XU Ruijie, TIAN Youwei. The asymmentry of the electron trajectory and spatial radiation in tightly focused laser[J]. Laser Technology, 2022, 46(6): 779.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!