人工晶体学报, 2023, 52 (8): 1477, 网络出版: 2023-10-28  

柠檬酸辅助溶剂热法制备Bi2MoO6及其光催化性能

Citric Acid-Assisted Solvothermal Synthesis of Bi2MoO6 and Its Photocatalytic Performance
作者单位
1 河南科技大学农学院,洛阳 471000
2 洛阳理工学院环境工程与化学学院,洛阳 471023
摘要
高效可见光响应光催化材料的开发对光催化技术的发展有着至关重要的作用。采用柠檬酸(CA)辅助溶剂热法制备Bi2MoO6,对其进行XRD、SEM、UV-Vis DRS、BET及PL表征,并研究可见光下降解环丙沙星(CIP)、灭活大肠杆菌(E. coli)和金黄色葡萄球菌(S. aureus)的性能。CA添加量为3 mmol时制备的BM-3展现出最优的光催化活性,在100 min内对CIP的降解率达到89.5%,其反应速率常数为不添加CA制备的BM-0的2.45倍,也能在150 min内将E.coli完全灭活,在200 min内将S. aureus灭活,失活后的细菌细胞由于内容物泄漏而表面凹陷且易聚集。多次循环实验证明BM-3具有良好的稳定性。宽的可见光吸收范围、大的比表面积和高效的光生载流子分离效率有利于CA辅助溶剂热法制备的Bi2MoO6光催化性能增强。
Abstract
The development of efficient visible light-responsive photocatalysts is of great importance to the advancement of photocatalytic technology. Bi2MoO6 was prepared via the citric acid (CA)-assisted solvothermal method and characterized by XRD, SEM, UV-Vis DRS, BET, and PL. The photocatalytic performance of the synthesized material was evaluated by ciprofloxacin (CIP) degradation, Escherichia coli (E. coli) and Staphylococcus aureus (S. aures) inactivation under visible light. Bi2MoO6 prepared with 3 mmol amount of CA, namely BM-3, exhibits the optimal photocatalytic activity. The CIP degradation efficiency of BM-3 reaches 89.5% within 100 min, which is 2.45 times higher than that of BM-0 prepared without CA. In addition, BM-3 could completely inactivate E. coli within 150 min or S. aures within 200 min, causing concave surfaces and cell aggregation due to the leakage of cellular contents. Multiple cycles of experimentation were conducted to validate the stability of BM-3. The wide visible light absorption range, large specific surface area, and efficient photogenerated carrier separation efficiency were key factors contributing to the superior photocatalytic performance of Bi2MoO6 synthesized by the CA-assisted solvothermal method.
参考文献

[1] CABRERA-REINA A, MARTNEZ-PIERNAS A B, BERTAKIS Y, et al. TiO2 photocatalysis under natural solar radiation for the degradation of the carbapenem antibiotics imipenem and meropenem in aqueous solutions at pilot plant scale[J]. Water Research, 2019, 166: 115037.

[2] LIU Y Z, YANG B, HE H, et al. Bismuth-based complex oxides for photocatalytic applications in environmental remediation and water splitting: a review[J]. Science of the Total Environment, 2022, 804: 150215.

[3] HASSAN J Z, RAZA A, QUMAR U, et al. Recent advances in engineering strategies of Bi-based photocatalysts for environmental remediation[J]. Sustainable Materials and Technologies, 2022, 33: e00478.

[4] QIN K N, ZHAO Q L, YU H, et al. A review of bismuth-based photocatalysts for antibiotic degradation: insight into the photocatalytic degradation performance, pathways and relevant mechanisms[J]. Environmental Research, 2021, 199: 111360.

[5] HU X, HU X J, PENG Q Q, et al. Mechanisms underlying the photocatalytic degradation pathway of ciprofloxacin with heterogeneous TiO2[J]. Chemical Engineering Journal, 2020, 380: 122366.

[6] HE J H, KUMAR A, KHAN M, et al. Critical review of photocatalytic disinfection of bacteria: from noble metals- and carbon nanomaterials-TiO2 composites to challenges of water characteristics and strategic solutions[J]. Science of the Total Environment, 2021, 758: 143953.

[7] DUTTA V, SINGH P, SHANDILYA P, et al. Review on advances in photocatalytic water disinfection utilizing graphene and graphene derivatives-based nanocomposites[J]. Journal of Environmental Chemical Engineering, 2019, 7(3): 103132.

[8] YU H B, JIANG L B, WANG H, et al. Photocatalysis: modulation of Bi2MoO6-based materials for photocatalytic water splitting and environmental application: a critical review[J]. Small, 2019, 15(23): 1970122.

[9] YIN G L, JIA Y L, LIN Y H, et al. A review on hierarchical Bi2MoO6 nanostructures for photocatalysis applications[J]. New Journal of Chemistry, 2022, 46(3): 906-918.

[10] CUI Y Y, LI M K, ZHU N L, et al. Bi-based visible light-driven nano-photocatalyst: the design, synthesis, and its application in pollutant governance and energy development[J]. Nano Today, 2022, 43: 101432.

[11] KOVCS Z, MOLNR C, GYULAVRI T, et al. Solvothermal synthesis of ZnO spheres: tuning the structure and morphology from nano- to micro-meter range and its impact on their photocatalytic activity[J]. Catalysis Today, 2022, 397/398/399: 16-27.

[12] LI L, GAO H, YI Z, et al. Comparative investigation on synthesis, morphological tailoring and photocatalytic activities of Bi2O2CO3 nanostructures [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 644: 128758.

[13] SARKAR R, ROY D, DAS D, et al. Morphology tuning of bismuth oxychloride nano-crystals by citric acid variation: application in visible light-assisted dye degradation and hydrogen evolution by electrochemical method[J]. International Journal of Hydrogen Energy, 2021, 46(30): 16299-16308.

[14] WU H, SUN Q, CHEN J Y, et al. Citric acid-assisted ultrasmall CeO2 nanoparticles for efficient photocatalytic degradation of glyphosate[J]. Chemical Engineering Journal, 2021, 425: 130640.

[15] HAO Z X, LV X W, HOU W, et al. Facile synthesis of BiOCl single-crystal photocatalyst with high exposed (001) facets and its application in photocatalytic degradation[J]. Inorganic Chemistry Communications, 2021, 134: 109038.

[16] LI S J, WANG C C, CAI M J, et al. Designing oxygen vacancy mediated bismuth molybdate (Bi2MoO6)/N-rich carbon nitride (C3N5) S-scheme heterojunctions for boosted photocatalytic removal of tetracycline antibiotic and Cr(VI): intermediate toxicity and mechanism insight[J]. Journal of Colloid and Interface Science, 2022, 624: 219-232.

[17] GUO J H, SHI L, ZHAO J Y, et al. Enhanced visible-light photocatalytic activity of Bi2MoO6 nanoplates with heterogeneous Bi2MoO6-x@Bi2MoO6 core-shell structure[J]. Applied Catalysis B: Environmental, 2018, 224: 692-704.

[18] VADIVEL S, FUJII M, RAJENDRAN S. Facile synthesis of broom stick like FeOCl/g-C3N5 nanocomposite as novel Z-scheme photocatalysts for rapid degradation of pollutants[J]. Chemosphere, 2022, 307: 135716.

[19] YANG Y, LAI M, HUANG J L, et al. Bi5O7I/g-C3N4 heterostructures with enhanced visible-light photocatalytic performance for degradation of tetracycline hydrochloride[J]. Frontiers in Chemistry, 2021, 9: 781991.

[20] HAJIALI M, FARHADIAN M, TANGESTANINEJAD S. Novel ZnO nanorods/Bi2MoO6/MIL-101(Fe) heterostructure immobilized on FTO with boosting photocatalytic activity for tetracycline degradation: reaction mechanism and toxicity assessment[J]. Applied Surface Science, 2022, 602: 154389.

[21] CHANKHANITTHA T, NANAN S. Visible-light-driven photocatalytic degradation of ofloxacin (OFL) antibiotic and Rhodamine B (RhB) dye by solvothermally grown ZnO/Bi2MoO6 heterojunction[J]. Journal of Colloid and Interface Science, 2021, 582: 412-427.

[22] ROJVIROON O, ROJVIROON T. Photocatalytic process augmented with micro/nano bubble aeration for enhanced degradation of synthetic dyes in wastewater[J]. Water Resources and Industry, 2022, 27: 100169.

[23] NEELGUND GURURAJ M, ADEREMI O. Photocatalytic activity of hydroxyapatite deposited graphene nanosheets under illumination to sunlight[J]. Materials Research Bulletin, 2022, 146: 111593.

[24] SHI H, WAN J, DONG X, et al. Ag bridged step-scheme MoS2/Bi4O5Br2 heterojunction for enhanced visible light driven photocatalytic disinfection activity[J]. Applied Surface Science, 2023, 607: 155056.

[25] YANG W, XU M, TAO K Y, et al. Building 2D/2D CdS/MOLs heterojunctions for efficient photocatalytic hydrogen evolution[J]. Small, 2022, 18(20): 2200332.

[26] YANG H, HE D, LIU C, et al. Visible-light-driven photocatalytic disinfection by S-scheme alpha-Fe2O3/g-C3N4 heterojunction: bactericidal performance and mechanism insight[J]. Chemosphere, 2022, 287: 132072.

马占强, 王楠, 郭葳, 张凯悦, 李娟. 柠檬酸辅助溶剂热法制备Bi2MoO6及其光催化性能[J]. 人工晶体学报, 2023, 52(8): 1477. MA Zhanqiang, WANG Nan, GUO Wei, ZHANG Kaiyue, LI Juan. Citric Acid-Assisted Solvothermal Synthesis of Bi2MoO6 and Its Photocatalytic Performance[J]. Journal of Synthetic Crystals, 2023, 52(8): 1477.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!