Journal of Advanced Dielectrics, 2023, 13 (2): 2250023, Published Online: Jun. 16, 2023  

Ferroelectric solid solutions with perovskite- and columbite-type components: From structures formation to domain and hysteresis phenomena

Author Affiliations
1 Research Institute of Physics, Southern Federal University, 194 Stachki Avenue, Rostov-on-Don 344090, Russia
2 Department of Physics, Southern Federal University, 5 Zorge Street, Rostov-on-Don 344090, Russia
3 Institute of High Technologies and Piezotechnics, Southern Federal University, 10 Milchakov Street, Rostov-on-Don 344090, Russia
4 Institute of Nanotechnologies, Electronics and Equipment Engineering, Southern Federal University, Taganrog 347922, Russia
5 Research Laboratory of Functional Nanomaterials Technology, Southern Federal University, Taganrog 347922, Russia
Abstract
The paper reports results on the complex study on ferroelectric ceramics that represent solid solutions containing components with a perovskite-type or columbite-type structure. Solid solutions of a three-component (1xy)NaNbO3xKNbO3yCdNb2O6 system are manufactured at x = 0.05–0.20 and y = 0.10. Domain structures in ceramic grains are studied. The consistency between experimental and calculated results is examined for coexisting phases split into non-180 domains (mechanical twins) in the solid solution with x = 0.15. A correlation between the internal structure (crystal, domain, granular, and defect) and fundamental electromechanical and polarization properties is stated for the studied three-component solid solutions.
References

[1] ParkS.-E. andShroutT. R., Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals, J. Appl. Phys. 82, 1804(1997). https://doi.org/10.1063/1.365983.

[2] PaikD.-S., ParkS.-E., WadaS., LiuS.-F. andShroutT. R., E-field induced phase transition in 〈001〉-oriented rhombohedral 0.92Pb(Zn1/3Nb 2/3)O3–0.08PbTiO3 crystals, J. Appl. Phys. 85, 1080(1999). https://doi.org/10.1063/1.369252.

[3] ParkS.-E., WadaS., CrossL. E. andShroutT. R., Crystallographically engineered BaTiO3 single crystals for high-performance piezoelectrics, J. Appl. Phys. 86, 2746(1999). https://doi.org/10.1063/1.371120.

[4] R. E. Eitel, S.-E. Park, C. A. Randal and T. R. Shrout, Perovskite materials for high temperature and high performance actuators and transducers, Patent No. US20030031622A1 (2003).

[5] ShurV., AkhmatkhanovA., LobovA. andTuryginA., Self-assembled domain structures: From micro-to nanoscale, J. Adv. Dielect. 5, 1550015(2015). https://doi.org/10.1142/S2010135X15500150.

[6] TawfikA., HemedaO.M., HenaishA.M.A. andDorghamA.M., High piezoelectric properties of modified nano lead titanate zirconate ceramics, Mater. Chem. Phys. 211, 1(2018). https://doi.org/10.1016/j.matchemphys.2018.01.073.

[7] ShvetsovI.A., LugovayaM.A., KonstantinovaM.G., AbramovP.A., PetrovaE.I., ShvetsovaN.A. andRybyanetsA.N., Dispersion characteristics of complex electromechanical parameters of porous piezoceramics, J. Adv. Dielect. 12, 2160004(2022). https://doi.org/10.1142/S2010135X21600043.

[8] HuX., LiX., YanK., QiX., ChenW. andWuD., Fabrication of porous PZT ceramics using micro-stereolithography technology, Ceram. Int. 47, 32376(2021). https://doi.org/10.1016/j.ceramint.2021.08.137.

[9] BianL., QiX., LiK., FanJ., LiZ., SunE., YangB., DongS. andCaoW., High-performance Pb(Ni1/3Nb2/3)O3-PbZrO3-PbTiO3 ceramics with the triple point composition, J. Eur. Ceram. Soc. 41, 6983(2021). https://doi.org/10.1016/j.jeurceramsoc.2021.07.034.

[10] FengT. andAliabadiM. H. F., Structural integrity assessment ofcomposites plates with embedded PZT transducers for structural health monitoring, Materials14, 6148(2021). https://doi.org/10.3390/ma14206148.

[11] ZhangS., XiaR., ShroutT.R., ZangG. andWangJ., Characterization of lead free (K0.5Na0.5)NbO3–LiSbO3 piezoceramic, Solid State Commun. 141, 675(2007). https://doi.org/10.1016/J.SSC.2007.01.007.

[12] WeiH., WangH., XiaY., CuiD., ShiY., DongM., LiuC., DingT., ZhangJ., MaY., WangN., WangZ., SunY., WeiR. andGuoZ., An overview of lead-free piezoelectric materials and devices, J. Mater. Chem. C6, 12446(2018), https://doi.org/10.1039/c8tc04515a.

[13] XiK., LiY., ZhengZ., ZhangL., LiuY. andMiY., Study on phase transitions and temperature stability of (1-x)K0.5Na0.5NbO3 -xBi(Zn0.5Zr0.5)O3 lead-free ceramics, Mater. Chem. Phys. 250, 123032(2020). https://doi.org/10.1016/j.matchemphys.2020.123032.

[14] TanZ., XieS., JiangL., XingJ., ChenY., ZhuJ., XiaoD. andWangQ., Oxygen octahedron tilting, electrical properties and mechanical behaviors in alkali niobate-based lead-free piezoelectric ceramics, J. Materiomics5, 372(2019). https://doi.org/10.1016/j.jmat.2019.02.001.

[15] WuJ.G., Advances in Lead-Free Piezoelectric Materials(Springer, Singapore, 2018).

[16] LeeM.H., KimD.J., ParkJ.S., KimS.W., SongT.K., KimM.H., KimW.J., DoD. andJeongI.K., High-performance lead-free piezoceramics with high Curie temperatures, Adv. Mater. 27, 6976(2015), https://doi.org/10.1002/adma.201502424.

[17] ZhaoY., LiuJ., ZhangX. andZhouH., Domain switching mechanism of orthorhombic-tetragonal coexistence (Li, K, Na)NbO3 ceramics, J. Alloys Compd. 763, 695(2018). https://doi.org/10.1016/j.jallcom.2018.06.005.

[18] KoruzaJ., BellA.J., FrömlingT., WebberK.G., WangK. andRödelJ., Requirements for the transfer of lead-free piezoceramics into application, J. Materiomics4, 13(2018). https://doi.org/10.1016/j.jmat.2018.02.001.

[19] WuJ., WangY., XiaoD., ZhuJ., YuP., WuL. andWuW., Piezoelectric properties of LiSbO3-modified (K0.48Na0.52)NbO3 lead-free ceramics, Jpn. J. Appl. Phys. 46, 7375(2007). https://doi.org/10.1143/JJAP.46.7375.

[20] RayG., SinhaN. andKumarB., Environment friendly novel piezoelectric 0.94[Na0.8K0.2NbO3]-0.06LiNbO3 ternary ceramic for high temperature dielectric and ferroelectric applications, Mater. Chem. Phys. 142, 619(2013). https://doi.org/10.1016/j.matchemphys.2013.08.006.

[21] DergunovaN.V., ReznitchenkoL.A., SakhnenkoV.P., RazumovskayaO.N. andGeguzinaG.A., On the possibility of isomorphic substitutions in ferroelectrics with the perovskite-and pseudoilmenite-type structure, Ferroelectrics247, 107(2000). https://doi.org/10.1080/00150190008214947.

[22] ChenJ., SuN., ZhuX.L., LiuX.Q., ZhangJ.-X. andChenX.M., Electric-field-controlled magnetism due to field-induced transition of Pna21/R3c in Bi1−xGdxFeO3 ceramics, J. Materiomics7, 967(2021). https://doi.org/10.1016/j.jmat.2021.03.006.

[23] SundariS. andDhanasekaranR., Influence of transition metal ions on multiferroic properties of lead-free NBT-BT ceramics, J. Adv. Dielect. 9, 1950045(2019). https://doi.org/10.1142/S2010135X19500450.

[24] KumariP., RaiR., SharmaS. andValenteM. A., Dielectric, electrical conduction and magnetic properties of multiferroic Bi0.8Tb0.1Ba0.1Fe0.9Ti0.1O3 perovskite compound, J. Adv. Dielect. 7, 1750034(2017). https://doi.org/10.1142/S2010135X17500345.

[25] PandeyR., ShankarU., MeenaS.S. andSinghA.K., Stability of ferroelectric phases and magnetoelectric response in multiferroic (1-x)Bi(Ni1/2Ti1/2)O3-PbTiO3/xNi0.6Zn0.4Fe2O4 particulate composites, Ceram. Int. 45, 23013(2019). https://doi.org/10.1016/j.ceramint.2019.07.348.

[26] AndryushinK.P., ShilkinaL.A., AndryushinaI.N., MoysaM.O., RudzkiD.I. andReznichenkoL.A., Crystal structure, polarization properties and reverse nonlinearity of solid solutions of the KNN-PZT system in a wide range of external influences, Ceram. Int. 47, 138(2021). https://doi.org/10.1016/j.ceramint.2020.08.117.

[27] SzeremetaA.Z., LazarI., MolakA., GruszkaI., KoperskiJ., SoszyńskiA. andKajewskiD., Improved piezoelectric properties of Pb(Zr0.70Ti0.30)O3 ceramics doped with non-polar bismuth manganite, Ceram. Int. 45, 18363(2019). https://doi.org/10.1016/j.ceramint.2019.06.051.

[28] AndryushinK., ShilkinaL., AndryushinaI., NagaenkoA., MoysaM., DudkinaS. andReznichenkoL., Features of the structure and electrophysical properties of solid solutions of the system (1-x-y) NaNbO3-xKNbO3yCd0.5NbO3, Materials14, 4009(2021). https://doi.org/10.3390/ma14144009.

[29] WangK. andLiJ.-F., Domain engineering of lead-free Li-modified (K,Na)NbO3 polycrystals with highly enhanced piezoelectricity, Adv. Funct. Mater. 20, 1924(2010). https://doi.org/10.1002/adfm.201000284.

[30] GarcíaJ.E., GuerraJ.D.S., ArajoE.B. andPérezR., Domain wall contribution to dielectric and piezoelectric responses in 0.65Pb(Mg1/3Nb2/3)-0.35PbTiO3 ferroelectric ceramics, J. Phys. D, Appl. Phys. 42, 115421(2009). https://doi.org/10.1088/0022-3727/42/11/115421.

[31] FesenkoE. G., Perovskite Family and Ferroelectricity(Atomizdat, Moscow, 1972), 248pp. (in Russian).

[32] SawyerC.B. andTowerC.H., Rochelle salt as a dielectric, Phys. Rev. 35, 269(1930).

[33] XuY., Ferroelectric Materials and their Applications(Elsevier, Amsterdam, 1991).

[34] MetratG., Theoretical determination of domain structure at transition from twinned phase: Application to the tetragonal-orthorhombic transition of KNbO3, Ferroelectrics26, 801(1980). https://doi.org/10.1080/00150198008008175.

[35] TopolovV., Heterogeneous Ferroelectric Solid Solutions: Phases and Domain States, 2nd edn.(Springer International, Cham, 2018).

[36] FousekJ. andJanovecV., The orientation of domain walls in twinned ferroelectric crystals, J. Appl. Phys. 40, 135(1969). https://doi.org/10.1063/1.1657018.

[37] MoysaM., TopolovV., AndryushinK., NagaenkoA., ShilkinaL., Il’inaM., OsotovaO., SahooS. andReznichenkoL., Links between volume fractions of non-180 degree domains of the tetragonal and monoclinic phases in 0.75NaNbO3– 0.15KNbO3 – 0.10CdNb2O6, Mendeley Data1, 1(2022). https://doi.org/10.17632/ngnc4rj8jy.1.

M. O. Moysa, V. Yu. Topolov, K. P. Andryushin, A. V. Nagaenko, L. A. Shilkina, M. V. Il’ina, O. I. Soboleva, S. Sahoo, L. A. Reznichenko. Ferroelectric solid solutions with perovskite- and columbite-type components: From structures formation to domain and hysteresis phenomena[J]. Journal of Advanced Dielectrics, 2023, 13(2): 2250023.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!