应用激光, 2023, 43 (6): 0029, 网络出版: 2024-02-02  

5304不锈钢表面激光熔覆铁基复合涂层的组织与性能研究

Study on Microstructure and Properties of Laser Cladding Fe-based Composite Coating on 304 Stainless Steel
作者单位
1 广东海洋大学电子与信息工程学院,广东 湛江 524088
2 广东省智慧海洋传感网及其装备工程技术研究中心广东 湛江 524088
3 广东海洋大学机械与动力工程学院,广东 湛江 524088
摘要
在304不锈钢表面预置不同质量分数的Fe60和WC复合粉末,采用光纤激光加工系统制备金属-陶瓷复合熔覆层。分别从宏观形貌、微观组织、物相分析、硬度分布等角度研究涂层的组织结构及性能。结果表明:复合熔覆层冶金结合良好,过渡区、热影响区生成CrC及WCx等硬质相,提高了熔覆层的硬度,对复合涂层力学性能有显著影响;当WC的质量分数比例为3%时,熔覆涂层的平均硬度为995 HV,约为304不锈钢基体的5倍,且高于其他质量分数比例的复合熔覆层。
Abstract
Fe60 and WC composite powders with different mass fractions were preset on the surface of 304 stainless steel, and the metal ceramic composite cladding layer was prepared by optical fiber laser processing system. The microstructure and properties of the coating were studied from the perspectives of macro morphology, microstructure, phase analysis, and hardness distribution. The results show that the metallurgical bonding of the composite cladding layer is good, and hard phases such as CrC and WCx are formed in the transition zone and heat affected zone, which improves the hardness of the cladding layer and significantly affects the mechanical properties of the composite coating. When the mass fraction of WC is 3%, the average hardness of the cladding coating is 995 HV, which is about 5 times that of 304 stainless steel substrate, and higher than that of the composite cladding coating with other mass fractions.
参考文献

[1] 王国栋. 海洋工程钢铁材料[M]. 北京: 化学工业出版社, 2017: 1-4.WANG G D. Steels for marine applications[M]. Beijing: Chemical Industry Press, 2017: 1-4.

[2] 蒋国庆, 赵红利, 聂旭涛, 等. 低温真空环境下304不锈钢界面接触热阻实验研究[J]. 低温工程, 2021(6): 65-70.JIANG G Q, ZHAO H L, NIE X T, et al. Experimental investigation on interface thermal contact resistance of 304 stainless steel at low temperature in vacuum[J]. Cryogenics, 2021(6): 65-70.

[3] 彭文山, 张彭辉, 李开伟, 等. 南海岛礁海洋环境中典型不锈钢浪花飞溅区腐蚀规律[J]. 装备环境工程, 2021, 18(11): 35-41.PENG W S, ZHANG P H, LI K W, et al. Corrosion behavior of typical stainless steels in marine environment of island in the South China Sea[J]. Equipment Environmental Engineering, 2021, 18(11): 35-41.

[4] 熊玮, 周雷, 贾涓, 等. 304不锈钢热浸镀铝/铝硅镀层的微观结构[J]. 热加工工艺, 2022, 51(8): 79-82.XIONG W, ZHOU L, JIA J, et al. Microstructure of hot-dip Al/Al-Si coating on 304 stainless steel[J]. Hot Working Technology, 2022, 51(8): 79-82.

[5] 廖巍, 郭彦兵, 张旺, 等. 激光焊接304不锈钢气体柜应力腐蚀失效分析[J]. 热加工工艺, 2022, 51(7): 148-153.LIAO W, GUO Y B, ZHANG W, et al. Stress corrosion failure analysis of laser welded 304 stainless steel gas cabinet[J]. Hot Working Technology, 2022, 51(7): 148-153.

[6] 孙丽, 王呼和. 爆炸冲击诱发AISI304不锈钢表面硬化层结构及性能[J]. 内蒙古工业大学学报(自然科学版), 2021(5): 321-326.SUN L, WANG H H. Microstructures and properties of surface hardening layer induced by explosive impact in AISI304 stainless steel plates[J]. Journal of Inner Mongolia University of Technology (Natural Science Edition), 2021(5): 321-326.

[7] 柳皓晨, 范林, 张海兵, 等. 钛合金深海应力腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.LIU H C, FAN L, ZHANG H B, et al. Research progress of stress corrosion cracking of Ti-alloy in deep sea environments[J]. Journal of Chinese Society for Corrosion and Protection, 2022, 42(2): 175-185.

[8] 赵晖, 孙旭, 杜春燕, 等. TC4合金表面激光熔覆材料研究进展[J]. 沈阳理工大学学报, 2022, 41(1): 31-37.ZHAO H, SUN X, DU C Y, et al. Research progress of laser cladding materials on TC4 alloy surface[J]. Journal of Shenyang Ligong University, 2022, 41(1): 31-37.

[9] 周丹, 郭计山, 熊大辉, 等. TiC含量对激光熔覆铁基涂层特性的影响[J]. 应用激光, 2021, 41(6): 1189-1195.ZHOU D, GUO J S, XIONG D H, et al. Effect of TiC content on the properties of Fe based coating by laser cladding[J]. Applied Laser, 2021, 41(6): 1189-1195.

[10] 吴晗, 舒林森. 激光功率对MoS2+FeCrNiSi复合涂层组织与性能的影响[J]. 材料热处理学报, 2021, 42(12): 134-141.WU H, SHU L S. Effect of laser power on microstructure and properties of MoS2+FeCrNiSi composite coatings[J]. Transactions of Materials and Heat Treatment, 2021, 42(12): 134-141.

[11] 开佳伟, 尹莉, 胡肇炜, 等. 激光熔覆Mo2NiB2熔覆层温度场与应力场仿真研究[J]. 陶瓷学报, 2021, 42(6): 1064-1071.KAI J W, YIN L, HU Z W, et al. Simulation of temperature field and stress field of Mo2NiB2 coating[J]. Journal of Ceramics, 2021, 42(6): 1064-1071.

[12] 姚建华. 激光表面改性技术及其应用[M]. 北京:国防工业出版社,2011.YAO J H. Laser surface modification technology and its application[M]. Beijing : National Defense Industry Press, 2011.

[13] 徐加乐, 段薇薇, 怀旭, 等. 激光技术在钛合金表面改性中的应用[J]. 铸造技术, 2021, 42(9): 820-824.XU J Y, DUAN W W, HUAI X, et al. Application of laser technology in surface modification of titanium alloy[J]. Foundry Technology, 2021, 42(9): 820-824.

[14] 席鑫. 532nm激光冲击316L不锈钢表面改性工艺及机理研究[D]. 哈尔滨: 哈尔滨工业大学,2021.XI X. Study on surface modification process and mechanism of 316L stainless steel by 532nm laser shock[D].Harbin: Harbin Institute of Technology,2021.

[15] 王港, 刘秀波, 刘一帆, 等. 304不锈钢激光熔覆Co-Ti3SiC2自润滑复合涂层微观组织与摩擦学性能[J]. 材料工程, 2021, 49(11): 105-115.WANG G, LIU X B, LIU Y F, et al. Microstructure and tribological properties of CoTi3SiC2 self-lubricating composite coatings on 304 stainless steel by laser cladding[J]. Journal of Materials Engineering, 2021, 49(11): 105-115.

[16] NIE J H, LI Y X, LIU S Y, et al. Evolution of microstructure of Al particle-reinforced NiCoCrAlY coatings fabricated on 304 stainless steel using laser cladding[J]. Materials Letters, 2021, 289: 129431.

[17] 史强, 马欣, 黄勇, 等. 浅谈304钢高速激光熔覆过程中扫描顺序对熔覆层组织性能影响的研究[J]. 中国设备工程, 2021(12): 83-84.SHI Q, MA X, HUANG Y, et al. Study on the influence of scanning sequence on microstructure and properties of cladding layer during high-speed laser cladding of 304 steel[J]. China Plant Engineering, 2021(12): 83-84.

[18] LIU H, ZHANG T, SUN S F, et al. Microstructure and dislocation density of AlCoCrFeNiSix high entropy alloy coatings by laser cladding[J]. Materials Letters, 2021, 283: 128746.

[19] 戴红霞, 冯晓丽. 厚度对车用304不锈钢表面激光熔覆钛涂层组织性能的影响[J]. 应用激光, 2020, 40(4): 626-630.DAI H X, FENG X L. Effect of thickness on microstructure and properties of laser cladding titanium coating on automotive 304 stainless steel surface[J]. Applied Laser, 2020, 40(4): 626-630.

[20] 陈义武, 吴鑫翔, 周利华, 等. 高强不锈钢激光熔覆层的组织与性能[J]. 金属热处理, 2021, 46(10): 232-236.CHEN Y W, WU X X, ZHOU L H, et al. Microstructure and properties of laser clad layer on high strength stainless steel[J]. Heat Treatment of Metals, 2021, 46(10): 232-236.

[21] 李丛伟, 邵长磊, 朱加雷, 等. 304不锈钢局部干法水下激光填丝熔覆层微观组织及性能[J]. 焊接学报, 2021, 42(8): 67-74.LI C W, SHAO C L, ZHU J L, et al. Microstructure and properties of laser cladding layer of 304 stainless steel by local dry method under water[J]. Transactions of the China Welding Institution, 2021, 42(8): 67-74.

[22] 徐成伟, 王振全, 胡欣, 等. 1Cr17Ni2不锈钢表面激光熔覆层的微观组织和性能研究[J]. 表面技术, 2011, 40(1): 11-13.XU C W, WANG Z Q, HU X, et al. Research on microstructure and property of laser cladding layer on 1Cr17Ni2 stainless steel[J]. Surface Technology, 2011, 40(1): 11-13.

[23] 吴俣, 马朋召, 白文倩, 等. 不同扫描策略下316L/AISI304激光熔覆过程中温度场-应力场的数值模拟[J]. 中国激光, 2021, 48(22): 2202002.WU Y, MA P Z, BAI W Q, et al. Numerical simulation of temperature field and stress field in 316L/AISI304 laser cladding with different scanning strategies[J]. Chinese Journal of Lasers, 2021, 48(22): 2202002.

[24] LIU Y F, ZHUANG S G, LIU X B, et al. Microstructure evolution and high-temperature tribological behavior of Ti3SiC2 reinforced Ni60 composite coatings on 304 stainless steel by laser cladding[J]. Surface and Coatings Technology, 2021, 420: 127335.

[25] 宫成, 刘泽, 马晓燕, 等. Ni-65WC粉末的雾化造粒与激光熔覆层组织和冲蚀性能研究[J]. 煤矿机械, 2022, 43(2): 47-51.GONG C, LIU Z, MA X Y, et al. Study on atomization granulation of Ni-65WC powder and microstructure and erosion performance of laser cladding layer[J]. Coal Mine Machinery, 2022, 43(2): 47-51.

[26] 杨行, 王华, 林相, 等. 激光熔覆铁基WC-Cr覆层的摩擦磨损性能研究[J]. 热加工工艺, 2021, 50(24): 106-109.YANG H,WANG H,LIN X, et al. Research on friction and wear properties of iron-based WC-Cr coating by laser cladding[J]. Hot Working Technology, 2021, 50(24): 106-109.

[27] 张海云, 张金, 朱磊, 等. WC含量对激光熔覆TC4涂层组织及性能的影响[J]. 热加工工艺, 2022, 51(8): 83-87.ZHANG H Y, ZHANG J, ZHU L, et al. Effect of WC content on microstructure and properties of laser cladding TC4 coating[J]. Hot Working Technology, 2022, 51(8): 83-87.

[28] 覃鑫, 祁文军, 左小刚. TC4钛合金表面激光熔覆NiCrCoAlY-Cr3C2复合涂层的摩擦和高温抗氧化性能[J]. 材料工程, 2021, 49(12): 107-114.QIN X, QI W J, ZUO X G. Friction and high temperature oxidation resistance of laser cladding NiCrCoAlY-Cr3C2 composite coating on TC4 titanium alloy[J]. Journal of Materials Engineering, 2021, 49(12): 107-114.

[29] 刘佳, 林晨, 徐欢欢, 等. 稀土Y2O3对激光熔覆Ni基WC熔覆层的组织与性能影响[J]. 应用激光, 2021, 41(5): 948-954.LIU J, LIN C, XU H H, et al. Effect of rare earth Y2O3 on microstructure and properties of laser cladding Ni-based WC coating[J]. Applied Laser, 2021, 41(5): 948-954.

[30] 张梁, 林晨, 刘佳, 等. 稀土La2O3含量对激光熔覆304L涂层的影响[J]. 应用激光, 2021, 41(5): 968-973.ZHANG L, LIN C, LIU J, et al. Effect of rare earth La2O3 content on laser cladding 304L coating[J]. Applied Laser, 2021, 41(5): 968-973.

[31] 战金明, 黄江, 梁志刚, 等. 镁合金添加量对TC4钛合金激光熔覆层的影响[J]. 应用激光, 2020, 40(2): 187-191.ZHAN J M, HUANG J, LIANG Z G, et al. Effect of addition amount of magnesium alloy on laser cladding of TC4 titanium alloy[J]. Applied Laser, 2020, 40(2): 187-191.

[32] 李镭昌, 魏昕. 激光熔覆复合涂层WC对裂纹产生机理影响研究[J]. 激光技术, 2023, 47(1): 52-58.LI L C, WEI X. Study on the effect of laser cladding composite coating and its WC on crack formation mechanism[J]. Laser Technology, 2023, 47(1): 52-58.

[33] SALMAN O, GAMMER C, CHAUBEY A, et al. Effect of heat treatment on microstructure and mechanical properties of 316L steel synthesized by selective laser melting[J]. Materials Science & Engineering A, 2019, 748: 205-212.

[34] 徐卫仙, 张群莉, 姚建华. 热锻模激光熔覆Co基WC涂层的高温磨损性能研究[J]. 应用激光, 2013, 33(4): 370-375.XU W X, ZHANG Q L, YAO J H. Research on high-temperature wear resistance of laser cladding Co-based WC composite coating on hot-forging die[J]. Applied Laser, 2013, 33(4): 370-375.

[35] 尹燕, 潘存良, 赵超, 等. 激光熔覆高铬铁基合金的组织形成机制及对显微硬度的影响[J]. 焊接学报, 2019, 40(7): 114-120.YIN Y, PAN C L, ZHAO C, et al. Microstructure formation mechanism of laser cladding high chromium iron-based alloy and its effect on microhardness[J]. Transactions of the China Welding Institution, 2019, 40(7): 114-120.

黄江, 朱志凯, 李凯玥, 师文庆, 吴香林, 谢玉萍. 5304不锈钢表面激光熔覆铁基复合涂层的组织与性能研究[J]. 应用激光, 2023, 43(6): 0029. Huang Jiang, Zhu Zhikai, Li Kaiyue, Shi Wenqing, Wu Xianglin, Xie Yuping. Study on Microstructure and Properties of Laser Cladding Fe-based Composite Coating on 304 Stainless Steel[J]. APPLIED LASER, 2023, 43(6): 0029.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!