激光技术, 2023, 47 (5): 672, 网络出版: 2023-12-11  

水束导引高功率激光的热效应分析

Thermal effect analysis of water-jet guided high-power laser
作者单位
桂林电子科技大学 机电工程学院, 桂林 541004
摘要
为了探究水束导引高功率激光的热损失问题, 调控水导高功率激光中水-光束耦合的热稳定性, 保证激光能量有效地传输至工件表面, 采用有限元方法建立水-光束耦合的数值模型, 利用射线追踪模拟不同入射激光功率、射流流速和直径时的水射流温度分布, 并通过实验数据验证模型的有效性, 对比了相同功率下连续激光与脉冲激光的温度分布。结果表明, 水射流的温度随着水-光束耦合长度增加而升高, 当入射激光功率增大、耦合腔压力降低以及射流直径减小时, 都会导致射流的温度升高, 严重影响射流的稳定性;由于水射流的冷却作用, 平均功率300 W的脉冲激光相较于连续激光, 温度相差约5 ℃。此研究结果为控制水导高功率激光中水-光束耦合的热效应、提高激光能量的传输效率提供了一定的参考。
Abstract
In order to control the thermal stability of water-laser coupling in water-jet guided high-power laser and to ensure the effective transmission of laser energy to the workpiece surface, the thermal loss problem of water-jet guided high-power laser was investigated. The finite element method was used to establish a numerical model of water-laser coupling, and ray tracing was used to simulate the temperature distribution of water jets with different incident laser power, jet velocity, and diameter. The model’s effectiveness was verified by experimental data, and continuous and pulsed laser temperature distribution was compared under the same power. The results show that the water jet’s temperature increases with the water-laser coupling length. When the incident laser power increases, the pressure of the coupling cavity decreases, the jet diameter decreases, and the temperature of the jet increases, which seriously affects the stability of the jet. Due to the water jet’s cooling effect, the pulse laser’s temperature difference with an average power of 300 W is about 5 ℃ compared with that of the continuous laser. The research results provide certain reference significance for controlling the thermal effect of water-laser coupling in water-jet guided high-power laser and improving the transmission efficiency of laser energy.
参考文献

[1] KENNEDY P K, HAMMER D X, ROCKWELL B A. Laser-induced breakdown in aqueous media[J]. Progress in Quantum Electronics, 1997, 21(3):155-248.

[2] NITIN S. The first coupling of a laser beam to a water jet[J]. Photonics Views, 2021, 18(1): 72-76.

[3] GOBET M, OBI S, PAVIUS M, et al. Implementation of short-pulse lasers for wafer scribing and grooving applications[J]. Journal of Laser Micro Nanoengineering, 2010, 5(1): 16-20.

[4] QIAO H Ch, CAO Zh H, CUI J F, et al. Experimental study on water jet guided laser micro-machining of mono-crystalline silicon[J]. Optics and Laser Technology, 2021, 140(4): 107057.

[5] PAUCHARD, LEE K, VG N, et al. Advanced micromachining combining nanosecond lasers with water jet-guided laser technology[J]. Proceedings of the SPIE, 2009, 7201: 72010A.

[6] ZHANG G Y, ZHANG Z, WANG Y F, et al. Gas shrinking laminar flow for robust high-power waterjet laser processing technology[J]. Optics Express, 2019, 27(26): 38635-38644.

[7] TAN S N. Study on water guided laser processing technology of SiCp/Al composites[D]. Harbin: Harbin Institute of Technology, 2014: 10-21(in Chinese).

[8] BOTYGINA N N, BUKATYI V I, LEVITSKII M E.The influence of thermal defocusing on the measurement of water transmissivity in a laser radiation field[J].Soviet Physics Journal, 1978, 21(8): 1092-1094.

[9] RICHERZHAGEN B. Interferometer for measuring the absolute refractive index of liquid water as a function of temperature at 1.064 μm[J]. Applied Optics,1996, 35(10): 1650-1653.

[10] XU J J, DAVIS S H. Instability of capillary jets with thermocapilla-rity[J]. Journal of Fluid Mechanics, 1985, 161(1): 1-25.

[11] MASHAYE F, ASHGRIZ N. Nonlinear instability of liquid jets with thermocapillarity[J]. Journal of Fluid Mechanics, 1995, 283: 97-123.

[12] CHRISTIAN B, HENNING J, MARKUS E, et al. Thermal investigation of interaction between high-power CW-laser radiation and a water-jet[J]. Physics Procedia, 2016, 83: 317-327.

[13] COUTY P, SPIEGEL , VG N, et al. Laser-induced break-up of water jet waveguide[J]. Experiments in Fluids, 2004, 36: 919-927.

[14] PINNICK R G, GILBERT L, FERNANDEZ J, et al. Stimulated Raman scattering and lasing in micrometer-sized cylindrical liquid jets time and spectral dependence[J]. Journal of the Optical Society of America, 1992, B9(6): 865-870.

[15] SPIEGEL , VG N, WAGNER F R. High efficiency Raman scattering in micrometer-sized water jets[J]. Optical Engineering, 2004, 43(2): 450-454.

[16] MULLICK S, MADHUKAR Y K, KUMAR S, et al. Temperature and intensity dependence of Yb-fiber laser light absorption in water[J]. Applied Optics, 2011, 50(34): 6319-6326.

[17] WANG Sh W, DING Y, CHENG B, et al. Research progress and mechanism of water-guided laser micromachining[J]. Chinese Journal of Lasers, 2022, 49(10): 1002404(in Chinese).

[18] YANG L F, JIAO H, HUANG Y X, et al. Simulation study of the flow field in the plane convergent nozzle based on the water guide laser[J]. Laser Technology, 2020, 44(6): 754-761(in Chinese).

[19] ZHANG G H, HUANG Y X, HUANG P, et al. Study on energy transmission law of water-laser coupling in water-jet guided laser technology[J]. Laser Technology, 2022, 46(6): 749-754(in Ch-inese).

[20] DENG C, YEO H R, KI H. Electrodynamic simulation of laser beam propagation in waterjet-guided laser processing[J]. Optical Express, 2020, 28(8): 11128-11143.

赵臻, 龙芋宏, 黄宇星, 张光辉, 周辽, 蔺泽, 焦辉, 黄平. 水束导引高功率激光的热效应分析[J]. 激光技术, 2023, 47(5): 672. ZHAO Zhen, LONG Yuhong, HUANG Yuxing, ZHANG Guanghui, ZHOU Liao, LIN Ze, JIAO Hui, HUANG Ping. Thermal effect analysis of water-jet guided high-power laser[J]. Laser Technology, 2023, 47(5): 672.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!