电光与控制, 2023, 30 (12): 115, 网络出版: 2024-01-04  

基于FPGA的遥感图像实时检测硬件加速

Hardware Acceleration of Real-Time Remote Sensing Image Detection Based on FPGA
作者单位
东北林业大学信息与计算机工程学院, 哈尔滨 150000
摘要
遥感图像实时检测是遥感应用领域的关键技术问题之一, 针对目前主流的目标检测算法在图像处理器(GPU)上存在模型参数量大、实时性差、功耗大和成本高的问题, 提出一种基于现场可编程门阵列(FPGA)的遥感图像实时检测方案。首先, 为减少参数量、提高检测速度, 采用MobileNetv2作为特征提取网络, 融合深度可分离卷积, 使得模型轻量化便于部署; 接着,采用CA注意力模块提高检测精度;最后, 将模型浮点数参数量化为8位定点数, 并将量化后的网络模型在FPGA上完成部署。实验表明, 在遥感数据集VisDrone 2019上, 所提设计方案平均精度均值(mAP)达到14.79%, FPS达到46.78 帧/s, 平均功耗为8 W, 比CPU提高375.4%的检测速度, 比GPU降低96.8%的功耗。该方案可以满足实时目标检测的要求, 并且能够部署在功耗受限的卫星、无人机等设备上。
Abstract
Real-time detection of remote sensing images is one of the key technical problems in the field of remote sensing application.As for current mainstream target detection algorithms, there are problems of a large number of model parameters, bad real-time performance, high power consumption and high costs on the image processor (GPU).To solve the problems, a real-time detection scheme of remote sensing images based on Field Programmable Gate Array (FPGA) is proposed.Firstly, in order to reduce the quantity of parameters and improve the detection speed, MobileNetv2 is taken as the feature extraction network, and the fusion with depth separable convolution is conducted, making the model lightweight and easy to deploy.Then, CA attention module is used to improve the detection accuracy.Finally, the floating point parameters of the model are quantified into 8-bit fixed point numbers, and the network model is deployed on FPGA after quantization.The experimental results show that on the remote sensing data set VisDrone 2019, the mean Average Precision (mAP) of the scheme designed in this paper reaches 14.79%, FPS reaches 46.78 frame/s, and average power consumption is 8 W.The detection speed is 375.4% higher than that of CPU, and the power consumption is 96.8% lower than that of GPU.The scheme can meet the requirements of real-time target detection, and can be deployed in power-limited satellite, UAVs and other equipment.
参考文献

[1] CHEBUD Y, NAJA G M, RIVERO R G, et al.Water quality monitoring using remote sensing and an artificial neural network[J].Water, Air and Soil Pollution, 2012, 223(8):4875-4887.

[2] 兰旭婷, 郭中华, 李昌昊.基于注意力与特征融合的光学遥感图像飞机目标检测[J].液晶与显示,2021, 36(11):1506-1515.

[3] 马梁, 苟于涛, 雷涛,等.基于多尺度特征融合的遥感图像小目标检测[J].光电工程,2022, 49(4):47-63.

[4] 王成龙,赵倩,赵琰,等.基于深度可分离卷积的实时遥感目标检测算法[J].电光与控制,2022, 29(8):45-49.

[5] 肖振久,杨玥莹,孔祥旭.基于改进YOLOv4的遥感图像目标检测方法[J].激光与光电子学进展,2023, 60(6):397-405.

[6] 陈朋,何建彬,陈诺,等.基于FPGA的视频实时目标检测方法研究[J].高技术通讯,2022, 32(3):239-247.

[7] 谭金林,范文童,刘亚虎,等.基于软硬件协同加速框架的遥感图像目标检测[J].计算机与现代化,2022(6):109-115.

[8] BOCHKOVSKIY A, WANG C Y, LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[EB/OL].(2020-04-23)[2022-12-15].https://arxiv.org/abs/2004.10934.

[9] LI Z, LANG C Y, LIEW J H, et al.Cross-layer feature pyramid network for salient object detection[J].IEEE Transactions on Image Processing, 2021, 30: 4587-4598.

[10] CHOLLET F.Xception:deep learning with depthwise separable convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu, HI:IEEE, 2017:1800-1807.

[11] HOU Q B, ZHOU D Q, FENG J S.Coordinate attention for efficient mobile network design[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Nashville, TN:IEEE, 2021:13708-13717.

赵永辉, 吕勇, 刘雪妍, 万晓玉, 郭淳宇, 刘淑玉. 基于FPGA的遥感图像实时检测硬件加速[J]. 电光与控制, 2023, 30(12): 115. ZHAO Yonghui, LYU Yong, LIU Xueyan, WAN Xiaoyu, GUO Chunyu, LIU Shuyu. Hardware Acceleration of Real-Time Remote Sensing Image Detection Based on FPGA[J]. Electronics Optics & Control, 2023, 30(12): 115.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!