电光与控制, 2022, 29 (12): 66, 网络出版: 2023-02-04  

基于人工蜂群算法的二阶双向多泵浦拉曼光纤放大器研究

Artificial Bee Colony Algorithm Based Second-Order Bidirectional Multi-pumping Raman Fiber Amplifier
作者单位
1 北京信息科技大学, 北京 100000
2 西安邮电大学, 西安 710000
3 北京好扑信息科技有限公司, 北京 100000
摘要
为了适应下一代6G网络对光纤传输系统大容量、高速率和低时延的要求, 以石英光纤为传输介质, 利用人工蜂群算法设计了二阶多泵浦拉曼光纤放大器。采用龙格-库塔法和打靶法求解二阶多泵浦拉曼光纤放大器的功率耦合波方程, 再通过人工蜂群算法对4个泵浦光的不同排列结构进行优化分析。通过Matlab仿真, 从14种双向泵浦结构中, 得到了性能最优的双向泵浦结构FFBF, 该结构在100 nm带宽范围内的平均增益高达24.8 dB, 增益平坦度仅为0.78 dB, 为6G网络的拉曼光纤放大器的设计和优化提供了参考。
Abstract
In order to meet the requirements of the next generation 6G network for large capacity,high speed and low delay on optical fiber transmission system,a second-order multi-pumping Raman fiber amplifier is designed by using quartz fiber as transmission medium and artificial bee colony algorithm.The Runge Kutta method and the shooting method are used to solve the power coupled wave equation of the second-order multi-pumping Raman fiber amplifier,and then the artificial bee colony optimization algorithm is used to optimize the different arrangement structures of the four pumping beams.Through Matlab simulation,the best bi-directional pumping structure FFBF is obtained from 14 types of bi-directional pumping structures.The average gain of the structure is as high as 24.8 dB in the bandwidth of 100 nm,and the gain flatness is only 0.78 dB,which provides a reference for the design and optimization of Raman fiber amplifier in 6G network.
参考文献

[1] KRZCZANOWICZ L,IQBAL M A,PHILLIPS I D,et al.High capacity wideband discrete Raman amplifiers: progress,challenges,and future prospects[C]//The 22nd International Conference on Transparent Optical Networks (ICTON).Bari:IEEE,2020.doi:10.1109/ICTON51198.2020.9203394.

[2] RENAUDIER J,GHAZISAEIDI A.Scaling capacity growth of fiber-optic transmission systems using 100+ nm ultra-wideband semiconductor optical amplifiers[J].Journal of Lightwave Technology,2019,37(8):1831-1838.

[3] HAMAOKA F,NAKAMURA M,OKAMOTO S,et al.Ultra-wideband WDM transmission in S-,C-,and L-Bands using signal power optimization scheme[J].Journal of Lightwave Technology,2019,37(8):1765-1771.

[4] IONESCU M,LAVERY D,EDWARDS A,et al.74.38 Tb/s transmission over 6300 km single mode fiber with hybrid EDFA/Raman amplifiers[C]//Optical Fiber Communications Conference and Exhibition (OFC).San Diego,CA:OFC,2019:18618821.

[5] RENAUDIER J,ARNOULD A,LE GAC D ,et al.107 Tb/s transmission of 103-nm bandwidth over 3×100 km SSMF using ultra-wideband hybrid Raman/SOA repeaters[C]//Optical Fiber Communications Conference and Exhibition (OFC).San Diego,CA:OFC,2019:18618326.

[6] BORRACCINI G,STRAULLU S,FERRARI A,et al.Flexible and autonomous multi-band Raman amplifiers[C]//IEEE Photonics Conference (IPC) .Vancouver,BC:IEEE, 2020.doi:10.1109/IPC47351.2020.9252432.

[7] 巩稼民, 张玉蓉, 毛俊杰, 等.多泵浦与光纤级联结合的宽带拉曼光纤放大器[J].激光与红外, 2020, 50(3):350-356.

[8] GONG J M,ZHAO Y,ZUO X,et al.Numerical study of raman fiber amplifier based on cascading As-S fiber and As-Se fiber[J].Optical Review,2015,22:483-488.

[9] 刘新华, 付成鹏, 杨智.基于EDFA与RFA的增益可调的混合光纤放大器[J].光通信研究,2014 (2):35-38.

[10] SHPOLYANSKIY Y A,KOZLOV S A,BESPALOV V G.Stimulated Raman scattering and four wave mixing with self-phase and cross-phase modulation of intense fs laser pulses[C]//Technical Digest.Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.Baltimore MD,IEEE,1992.doi:10.1109/QELS.1999.807414.

[11] WEN S,CHI S.Distributed erbium-doped fiber amplifiers with stimulated Raman scattering[J].IEEE Photonics Technology Letters,1992,4(2):189-192.

[12] GONG J M,FANG Q,LIU J,et al.The effect of SRS on signal power in single mode silica fiber in DWDM optical communication system with equally spaced channels[J].Chinese Journal of Lasers B,1999,B8(6):51-54.

[13] GONG J M,FANG Q,LIU J,et al.Analytical model of non-dispersion-limited transient stimulated Raman scattering in single-mode silica fiber in WDM optical communication system[J].Chinese Journal of Lasers B,1999, B9(2):175-181.

[14] 王玉, 刘伟丽, 秦子婷, 等.基于MATLAB对若干微分方程进行数值求解[J].明日风尚, 2018(7):225.

[15] 陈相材.基于高非线性光纤的布里渊激光器理论和实验研究[D].合肥: 合肥工业大学, 2018.

[16] LIU K,WANG C F,LIU S Y.Artificial bee colony algorithm combined with previous successful search experience[J].IEEE Access,2019,7:34318-34332.

[17] 陈静, 周清旭, 林雅婷, 等.基于人工蜂群算法的多抽运拉曼光纤放大器优化设计[J].光学学报, 2018, 38(6):59-64.

[18] AKHLAGHI M,EMAMI F.Fuzzy adaptive modified PSO-algorithm assisted to design of photonic crystal fiber Raman amplifier[J].Journal of the Optical Society of Korea, 2013,17(3):237-241.

[19] 王丹燕, 姜海明, 谢康.双向多泵浦光纤拉曼放大器偏振相关增益研究[J].红外与激光工程, 2016, 45(2).doi:10.3788/IRLA201645.0222003.

巩译, 刘芳, 孟繁轲. 基于人工蜂群算法的二阶双向多泵浦拉曼光纤放大器研究[J]. 电光与控制, 2022, 29(12): 66. GONG Yi, LIU Fang, MENG Fanke. Artificial Bee Colony Algorithm Based Second-Order Bidirectional Multi-pumping Raman Fiber Amplifier[J]. Electronics Optics & Control, 2022, 29(12): 66.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!