中国激光, 2023, 50 (17): 1714018, 网络出版: 2023-09-01  

强太赫兹脉冲产生及硒化镓晶体非线性效应研究 下载: 570次【增强内容出版】

Intense Terahertz Pulse Generation and Nonlinear Effect of GaSe Crystal
作者单位
1 上海大学物理系,上海 200444
2 上海电力大学电子与信息工程学院,上海 200090
3 中国科学院上海技术物理研究所红外物理国家重点实验室,上海 200083
摘要
为探索单周期或亚周期的强场太赫兹脉冲抽运下各种材料的非线性光学响应,基于铌酸锂(LiNbO3)晶体,采用飞秒脉冲倾斜波前技术,获得了单脉冲能量为2.6 μJ、峰值场强为632 kV/cm的强太赫兹脉冲输出,并在该辐射源的基础上搭建了太赫兹抽运-光探测系统。利用该系统研究了硒化镓(GaSe)晶体的非线性光学响应,观测到亚周期的太赫兹脉冲诱导的光学双折射,其引起的相位变化与普克尔斯效应和克尔效应相关。研究结果为强场太赫兹抽运下介质的非线性效应分析提供了思路,为材料的电光系数和非线性折射率系数的测定提供了借鉴。
Abstract
Objective

The study of high-order nonlinear behavior,prompted by single-cycle or subcycle strong terahertz pulses,has been scarce,primarily due to the limitations of highly stable and high-intensity terahertz radiation sources. The strong terahertz field–matter interaction leads to new avenues for exploring and understanding various novel nonlinear phenomena. The employment of a femtosecond laser to pump a lithium niobate (LiNbO3) crystal has been considered as a major strategy for generating strong terahertz radiation. The strong terahertz pulse acquired by this technique can coherently detect and manipulate the optical properties of materials on an ultrafast timescale and can play a crucial role in discovering new phenomena and revealing new mechanisms. In this study,to explore the nonlinear effects of materials under strong terahertz pulse irradiation,a strong terahertz pump-optical probe spectroscopy system is developed by utilizing the tilted wavefront technique based on a lithium niobate crystal. Specifically,the highest terahertz output energy of 2.6 μJ and a focused terahertz peak electric field strength of 632 kV/cm are realized. Meanwhile,the nonlinear crystal gallium selenide (GaSe) is examined with this system,and we demonstrate that the strong change in the terahertz pulse-induced refractive index of GaSe is due to Pockels and Kerr effects.

Methods

A strong terahertz pump-optical probe spectroscopy system is established (Fig.1). This system operates on a Ti∶sapphire laser amplifier that can deliver laser pulses with a single-pulse energy of 2 mJ,a pulse duration of 120 fs,and a repetition rate of 1 kHz. A small portion of the femtosecond laser is divided by a beam splitter to sample the birefringence signal of the material induced by the terahertz pulse,whereas the residual 90% of the laser energy is used to pump the lithium niobate crystal to generate a strong terahertz pulse. A diffraction grating of 1800 line/mm is used to tilt the wavefront of the pump laser. A half-wave plate behind the grating changes the polarization of the pump laser from horizontal to vertical,making it parallel to the optical axis of the lithium niobate crystal. A 4f-lens geometry is used to image the pump spot with a tilted pulse front onto lithium niobate. The polarization distribution of terahertz pulses delivered from the lithium niobate is vertical. Subsequently,strong terahertz pulses are focused on the surface of the sample using a series of off-axis parabolic mirrors. A weak 780-nm probe beam overlaps with the terahertz pumping beam on the sample,and it is transmitted through the sample. An assembly of a quarter-wave plate,a Wollaston prism,and a balanced detector is used to sample changes in the refractive index of the material. A pair of wire-grid polarizers is used to tune the electric field intensity of terahertz pulses.

Results and Discussions

The transient optical responses of the GaSe crystal are measured under different terahertz peak electric fields (Fig.3). The transient signal intensity increases as the terahertz peak electric field strength increases. In essence,when strong terahertz pulses are incident on the GaSe crystals,the refractive index is modulated. Subsequently,the delayed probe light experiences birefringence induced by intense terahertz pulses as it passes through the GaSe crystal,and the two polarization components parallel and perpendicular to the terahertz polarization direction produce a phase retardation in the propagation direction. The maximum transient signals under different terahertz electric fields are extracted to analyze the potential nonlinear behavior of the experimental phenomena. A function that considers the coexistence of χ(2) and χ(3) nonlinear processes is used to fit the extracted maximum. The fitted curve can reproduce the experimental data in a better manner,indicating that the strong terahertz pulses simultaneously cause Pockels and Kerr effects in the GaSe crystal. Finally,we present the relationship between the change in the refractive index,induced by strong terahertz pulses,and electro-optic coefficient,along with the nonlinear refractive index.

Conclusions

A strong terahertz pulse with a single pulse energy of 2.6 μJ and peak electric field strength of 632 kV/cm is generated by employing the tilted wavefront technique based on lithium niobate crystals. The nonlinear optical response of a gallium selenide crystal is examined using a terahertz pump-optical probe system. The optical birefringence induced by sub-cycle terahertz pulses is observed,and the analysis suggests that the changes in polarization are related to Pockels and Kerr effects. This study provides a pathway for the analysis of the nonlinear effect in a medium under strong terahertz pumping and offers a reference for the determination of the electro-optic coefficient and nonlinear refractive index of materials.

1 引言

得益于飞秒激光技术的快速发展,可见-近红外波段的超快非线性过程已经得到了广泛的研究,相应的研究手段相对成熟。然而,受限于高稳定性、高强度的太赫兹脉冲辐射源,关于单周期或亚周期的强太赫兹脉冲诱导的高阶非线性行为(如太赫兹高次谐波1-2、克尔效应3-4、饱和吸收5、自相位调制6及交叉相位调制7等)的研究鲜有报道。亚周期内的瞬态介电常数调制对应于材料的光学性质在很宽的频率范围内的变化。研究亚周期强太赫兹场与物质的相互作用对于探索、理解各种新奇的非线性现象具有重要意义,时间分辨的强太赫兹光谱已成为研究不同物质系统中超快动力学及非线性光与物质相互作用的强有力的光谱学工具。同时,利用亚周期高强度脉冲可以实现多种元激发的相干调控。光学介质的折射率随光强变化是非线性光学中的一种基本现象,这种现象导致了光的自作用效应8,包括光的自相位调制、自聚焦或自散焦。透明介质中引起这些自作用效应的非线性响应的强度依赖于介质的线性和非线性折射率系数,因此,这些参数的测定对于非线性晶体的应用具有重要的意义9

目前,产生强太赫兹脉冲辐射的方法有多种。其中,LiNbO3晶体有着非常大的有效非线性系数(d33=168 pm/V)10、非常高的损伤阈值及较大的能隙,避免了双光子吸收的发生,因此基于LiNbO3晶体的光学整流效应成为利用光子学方法获取强太赫兹脉冲源的主要的手段之一11-12。为了实现晶体中的速度匹配,需要利用超快脉冲的倾斜波前技术13。该技术利用衍射光栅使飞秒激光脉冲的强度前沿倾斜,使得抽运光的群速度等于太赫兹脉冲的相速度,进而获得高效率的太赫兹脉冲输出14。利用该技术产生的亚周期强太赫兹脉冲源,可以在超快时间尺度上相干探测、操控材料的光学特性,进而研究各类基础物理,这种方法有助于发现新现象、揭示新机理15

GaSe是一种六方层状结构的负单轴晶体,室温下的带隙为2.0 eV16,具有较大的二阶非线性系数(d22=54 pm/V)17和较宽的光学透明窗口,特别是太赫兹波段的吸收系数很小(αTHz=0.07 cm-118。作为一种综合性能优异的非线性材料,GaSe在超快光电子器件和非线性光学晶体等领域中有着广泛的应用。在太赫兹技术领域中,GaSe可作为太赫兹发射器19-21和太赫兹探测晶体22-23,相关研究已经有了大量报道,而强太赫兹电磁脉冲诱导的非线性响应还未得到揭示。当GaSe作为太赫兹探测晶体时,基于与太赫兹电场成正比的普克尔斯效应(二阶非线性效应),可对太赫兹电场进行重构。三阶的克尔效应则与太赫兹电场的平方成正比。当太赫兹电场足够强时,可以同时诱导普克尔斯效应与克尔效应。

为了探索强太赫兹脉冲抽运下材料的非线性效应,本文基于LiNbO3晶体,采用倾斜波前技术,实现了2.6 μJ的单太赫兹脉冲能量输出,聚焦后的场强可达632 kV/cm。在强太赫兹辐射源的基础上搭建了强太赫兹抽运-光探测光谱系统。利用该系统对非线性晶体GaSe进行了测试研究,观测到亚周期太赫兹脉冲诱导的GaSe在光学频段上的折射率系数扰动,其是二阶的普克尔斯效应和三阶的克尔效应引起的。

2 实验装置

用于太赫兹非线性效应研究的实验构置如图1所示。该光谱系统被钛蓝宝石再生放大器输出的飞秒激光脉冲驱动,其可以提供单脉冲能量为2 mJ、中心波长为780 nm、重复频率为1 kHz、脉宽为120 fs的激光源。飞秒激光进入系统后,一个分束镜将一小部分光分出以取样太赫兹脉冲诱导的材料的双折射信号,其余90%的能量用于抽运LiNbO3晶体以产生强太赫兹脉冲。刻线密度为1800 line/mm的反射光栅用于实现抽运光的波前倾斜,其中入射角和一级衍射角分别为~35°和~56°。光栅后的半波片将抽运光的偏振由水平变为竖直方向,使之与LiNbO3晶体的光轴平行,以充分利用LiNbO3最大的有效非线性系数d33。4f成像系统由两个焦距分别为250 mm和150 mm的双凸透镜组成,它们将经过反射光栅的脉冲前沿倾斜的抽运光成像到LiNbO3晶体上。该成像系统还可以使抽运光在竖直方向缩束,提高了抽运光的能量密度。三棱柱形LiNbO3晶体的切割角为62°,竖直方向为z轴,入射面镀有宽带增透膜,太赫兹出射面输出的太赫兹偏振是竖直方向的。强太赫兹脉冲经过一系列离轴抛物面镜后聚焦到样品位置处。强度较弱的780 nm探测光束在样品处与太赫兹抽运光束重合并透过样品,其偏振方向与太赫兹波的偏振方向平行。采用四分之一波片、沃拉斯顿棱镜和平衡探测器的组合对材料折射率的变化进行取样。一对线栅太赫兹偏振片被放置于第二个离轴抛物面镜后用来调节太赫兹脉冲的电场强度。其中:第二个线栅偏振片的线栅方向保持水平不变,使入射到样品上的太赫兹波为竖直偏振;旋转第一个线栅偏振片,使太赫兹波的场强衰减。整个实验在室温、空气氛围中进行。值得一提的是,当将样品放置于第三和第四个离轴抛物面镜之间的焦平面上时,该系统还可以进行强太赫兹时域光谱测量。

图 1. 强太赫兹抽运-光探测系统的构置图

Fig. 1. Configuration diagram for strong terahertz pump-optical detection system

下载图片 查看所有图片

采用热释电太赫兹功率计对样品位置处的太赫兹功率进行了测量,测量到最大的功率为2.6 mW。使用刀片法对太赫兹光斑大小进行测量,测量到的水平和竖直方向的结果如图2(a)、(b)所示,其中FWHM为半峰全宽。通过高斯拟合得到水平和竖直方向的太赫兹光斑尺寸分别为1.18 mm和0.95 mm。

图 2. 强太赫兹脉冲的表征。(a)刀片法在水平方向上的测量结果;(b)刀片法在竖直方向上的测量结果;(c)太赫兹脉冲的时域波形;(d)太赫兹脉冲的频域谱

Fig. 2. Characterization of strong terahertz pulse. (a) Measurement results of knife-edge method in horizontal direction; (b) measurement results of knife-edge method in vertical direction; (c) time-domain waveform of terahertz pulses ; (d) frequency domain spectrum of terahertz pulses

下载图片 查看所有图片

为了获取样品位置处太赫兹脉冲的时域波形和场强,用厚度为0.5 mm、取向为<110>的ZnTe晶体进行了电光取样测量。在该过程时,强太赫兹电场会导致采集到的波形失真,为了避免这种现象,通过旋转第一个线栅偏振片大幅减小太赫兹脉冲的强度。探测到的太赫兹脉冲的时域信号以及傅里叶变换后的频域信号分别如图2(c)、(d)所示,可以看到该系统的强太赫兹脉冲是半个周期,中心频率为0.8 THz。太赫兹脉冲的能量计算公式24-25

WTHz=τAETHzpk22η0

式中:WTHz为太赫兹脉冲的能量;τ为太赫兹脉冲的脉宽;A为太赫兹脉冲的光斑面积;ETHzpk为太赫兹脉冲的峰值电场;η0为自由空间阻抗。根据式(1)可计算得到样品位置处的太赫兹峰值场强最大为632 kV/cm。

用于实验的GaSe晶体尺寸为15.0 mm×15.0 mm×0.5 mm,取向为c切。实验时利用线栅偏振片对太赫兹功率进行调节以进行太赫兹场强依赖的实验。

3 分析与讨论

图3(a)展示了不同太赫兹场强下GaSe晶体的太赫兹抽运-光探测的实验结果。可以看到,瞬态信号的强度随着太赫兹峰值电场的增加而变大。实际上,入射到GaSe晶体上的强太赫兹脉冲将会对其折射率进行调制。延迟的780 nm探测光再经过GaSe晶体时,将感应到双折射,平行和垂直于太赫兹偏振方向的两个偏振分量会在传播方向z位置处产生相位延迟(Δϕ),其与折射率变化(Δn)的关系26

Δϕt=ωcΔnz,t dz

式中:ω为探测光的角频率;c为光速。当探测光从厚度为d的GaSe晶体中射出时,经历的相位延迟为

Δϕ=Δndωc

平衡探测器输出的差分电压信号与探测光的两个正交分量的相位差关系3

ΔVV0=sin Δϕ=sin Δndωc=sin ny'-nx'dωc

式中:ΔV为平衡探测器输出的电压之差;V0为电压之和;ny'nx'分别为太赫兹脉冲抽运后GaSe晶体中y'轴和x'轴方向的折射率。强太赫兹抽运导致的相位延迟Δϕ很小,通常在几到几十毫弧度(mrad)量级3-426-28,因此可以取ΔV/V0≈Δϕ。从图3(a)中的插图可以看到,瞬态信号与抽运太赫兹的电场包络非常接近,这表明GaSe的非线性响应非常快,太赫兹脉冲诱导的信号会立即响应太赫兹脉冲的变化,这是由于GaSe中的太赫兹波与探测光具有良好的相位匹配(GaSe晶体在频率1 THz处的折射率nTHz=3.27,GaSe晶体在波长800 nm处的折射率n800 nm=3.13)10

图 3. 归一化强太赫兹脉冲诱导的非线性光学响应。(a)抽运太赫兹脉冲在不同峰值场强下诱导的相位延迟随时间的演化,插图为632 kV/cm场强下测得的信号与太赫兹时域脉冲的对比;(b)诱导的相位延迟的峰值与太赫兹峰值场强的依赖关系及拟合曲线

Fig. 3. Nonlinear optical response induced by normalized strong terahertz pulse. (a) Evolution of phase retardation induced by pumped terahertz pulse over time under different peak field strengths with comparison between measured signal at field strength of 632 kV/cm and terahertz time-domain pulse shown in inset; (b) dependence of peak value of induced phase retardation on terahertz peak field strength and fitted curve

下载图片 查看所有图片

我们通过提取强场太赫兹诱导的信号的峰值[图3(b)],分析实验现象潜在的非线性行为。我们分别采用了与太赫兹电场呈正比和平方关系的函数进行拟合,但拟合曲线很难与实验数据吻合。因此我们在二阶非线性电极化率(χ(2))和三阶非线性电极化率(χ(3))共存的情况下进行拟合:

Y=aX+bX2

式中:ab为常数。拟合结果如图3(b)中的实线所示,可以看到,拟合曲线与实验数据吻合得很好。与折射率变化有关的二阶和三阶非线性效应分别为普克尔斯效应和克尔效应,这意味着GaSe晶体在强太赫兹脉冲抽运下同时出现了普克尔斯效应和克尔效应。拟合得到a=1.98×10-4b=2.2×10-6。二阶非线性过程的权重远大于三阶非线性过程的权重,这与理论也是一致的,因为材料中的高阶非线性效应比低阶非线性效应弱得多。

当综合考虑二阶和三阶非线性效应时,GaSe晶体的折射率与太赫兹电场(E)的关系为

n(E)=n0+αE+βE2

式中:n(E)为GaSe晶体的折射率;n0为静态折射率;αβ为常数。那么折射率变化Δn

Δn=αE+βE2

折射率变化由普克尔斯效应(太赫兹脉冲诱导的折射率变化Δn1=αE)和克尔效应(太赫兹脉冲诱导的折射率变化Δn2=βE2)引起。接下来我们从折射率椭球方程出发,推导强太赫兹脉冲诱导的GaSe晶体折射率变化与电光系数和克尔系数之间的定量关系。

对于普克尔斯效应,GaSe的一次电光系数张量为

0γ1200γ220000000000γ6100

式中:非零张量元γ12=-γ22=γ61

GaSe为单轴晶体,当未施加太赫兹电场时,no=nx=nyne=nz,其中no为o光的折射率;ne为e光的折射率;nxnynz分别为GaSe晶体中xyz轴方向的折射率。折射率椭球方程为

x2nx2+y2ny2+z2nz2=1

假定沿晶体的x轴施加太赫兹电场E,有Ex=EEy=Ez=0,其中ExEyEz分别表示施加在晶体xyz轴方向上的太赫兹电场。折射率椭球方程变为

x2nx2+y2ny2+z2nz2+2xyγ61E=1

通过坐标变换可得

1no2+γ61Ex'2+1no2-γ61Ey'2+1ne2z'2=1

再利用泰勒公式,得到新坐标系下的折射率为

nx'=no-12no3γ61Eny'=no+12no3γ61Enz'=ne

式中:nx'ny'nz'分别为x'、y'和z'轴方向的折射率。因此,基于普克尔斯效应,太赫兹脉冲诱导的折射率变化为

Δn1=ny'-nx'=no3γ61E

对于克尔效应,GaSe的二次电光系数张量为

h11h12h13000h12h11h13000h31h31h33000000h44000000h44000000h11-h12

当未施加太赫兹电场时,折射率椭球方程为式(9)

沿晶体的x轴施加太赫兹电场E,折射率椭球方程变为

1no2+h11E2x2+1no2+h12E2y2+1ne2+h31E2z2=1

可求得新坐标系下的折射率为

nx'=no-12no3h11E2ny'=no-12no3h12E2nz'=ne-12ne3h31E2

探测光沿z轴传播,其折射率变化为

Δn2=ny'-nx'=12no3h11-h12E2=KλE2

式中:K为克尔电光系数;λ为探测光的波长。式(13)、(17)分别展示了两种非线性光学效应中折射率变化与太赫兹电场、电光系数的关系。实验中总折射率变化Δn应为两者之和,即Δnn1n2

另一方面,从非线性光学理论易知,在普克尔斯效应和克尔效应中,外加的太赫兹电场诱导的折射率变化分别为

Δn1=χ2E/noΔn2=n2E2=3χ3E2/2no

式中:n2为非线性折射率系数。

当实验测得ΔVV0后,便可以得到强太赫兹脉冲诱导的相位延迟Δϕ,从而进一步得到折射率的变化Δn。通过式(5)拟合太赫兹脉冲抽运下瞬态信号的峰值与电场的依赖关系,得到拟合参数ab,再根据式(13)、(17)、(18)、(19)便可以得到亚周期强场太赫兹抽运下材料的电光系数以及非线性折射率系数。由于我们在实验中只测量了ΔV,而没有测量V0,因此当前无法给出这些参量具体的数值大小,但我们提供了一种太赫兹非线性光谱的分析思路,其对各种光学材料非线性参数的测量具有重要的参考价值。后续我们将利用该光谱系统对各类透明材料的非线性行为展开研究。上述分析方法具有普适性,对于非中心对称介质,如GaSe、GaAs和ZnTe等,强太赫兹电场诱导的相位移动受二阶和三阶非线性效应的共同作用。而对于中心对称介质,如硅、石英玻璃、石墨烯和液体介质,其二阶非线性响应为零,太赫兹电场诱导的相位变化主要是由三阶非线性效应(克尔效应)引起的,数据的拟合和相关参量的提取则更为直接和简便。

4 结论

利用波前倾斜的飞秒激光抽运LiNbO3晶体,得到了单脉冲能量为2.6 μJ、峰值强度为632 kV/cm的亚周期强太赫兹脉冲辐射源。为了研究各种材料在强场太赫兹脉冲抽运下的非线性响应,在此基础上搭建了强太赫兹抽运-光探测光谱系统,并利用该系统对非线性晶体GaSe进行了测试研究。实验发现,强场太赫兹抽运同时导致了普克尔斯效应和克尔效应。最后给出了折射率变化与太赫兹电场之间的关系式,其为强太赫兹抽运下非线性系数的测定提供了参考。

参考文献

[1] Hafez H A, Kovalev S, Deinert J C, et al. Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions[J]. Nature, 2018, 561(7724): 507-511.

[2] Cheng B, Kanda N, Ikeda T N, et al. Efficient terahertz harmonic generation with coherent acceleration of electrons in the Dirac semimetal Cd3As2[J]. Physical Review Letters, 2020, 124(11): 117402.

[3] Hoffmann M C, Brandt N C, Hwang H Y, et al. Terahertz kerr effect[J]. Applied Physics Letters, 2009, 95(23): 231105.

[4] Zalkovskij M, Strikwerda A C, Iwaszczuk K, et al. Terahertz-induced Kerr effect in amorphous chalcogenide glasses[J]. Applied Physics Letters, 2013, 103(22): 221102.

[5] Hafez H A, Kovalev S, Tielrooij K J, et al. Terahertz nonlinear optics of graphene: from saturable absorption to high-harmonics generation[J]. Advanced Optical Materials, 2020, 8(3): 1900771.

[6] Turchinovich D, Hvam J M, Hoffmann M C. Self-phase modulation of a single-cycle terahertz pulse by nonlinear free-carrier response in a semiconductor[J]. Physical Review B, 2012, 85(20): 201304.

[7] Vicario C, Shalaby M, Hauri C P. Subcycle extreme nonlinearities in GaP induced by an ultrastrong terahertz field[J]. Physical Review Letters, 2017, 118(8): 083901.

[8] BoydR W. Nonlinear optics[M]. San Diego: Academic Press,2008.

[9] Dolgaleva K, Materikina D V, Boyd R W, et al. Prediction of an extremely large nonlinear refractive index for crystals at terahertz frequencies[J]. Physical Review A, 2015, 92(2): 023809.

[10] Hebling J, Yeh K L, Hoffmann M C, et al. Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities[J]. Journal of the Optical Society of America B, 2008, 25(7): B6-B19.

[11] 吴晓君, 任泽君, 孔德胤, 等. 铌酸锂强场太赫兹光源及其应用[J]. 中国激光, 2022, 49(19): 1914001.

    Wu X J, Ren Z J, Kong D Y, et al. Lithium niobate strong-field terahertz source and its applications[J]. Chinese Journal of Lasers, 2022, 49(19): 1914001.

[12] 才家华, 张保龙, 耿春艳, 等. 铌酸锂强场太赫兹非线性光谱系统[J]. 中国激光, 2023, 50(17): 1714012.

    Cai J H, Zhang B L, Geng C Y, et al. Lithium niobate strong field terahertz nonlinear spectroscopy[J]. Chinese Journal of Lasers, 2023, 50(17): 1714012.

[13] Hebling J. Derivation of the pulse front tilt caused by angular dispersion[J]. Optical and Quantum Electronics, 1996, 28(12): 1759-1763.

[14] Hebling J, Almasi G, Kozma I, et al. Velocity matching by pulse front tilting for large area THz-pulse generation[J]. Optics Express, 2002, 10(21): 1161-1166.

[15] 吴晓君, 郭丰玮, 马景龙, 等. 基于倾斜波前技术的高能强场太赫兹辐射脉冲源[J]. 中国激光, 2019, 46(6): 0614008.

    Wu X J, Guo F W, Ma J L, et al. High-energy strong-field terahertz pulses based on tilted-pulse-front technique[J]. Chinese Journal of Lasers, 2019, 46(6): 0614008.

[16] Allakhverdiev K R, Yetis M Ö, Özbek S, et al. Effective nonlinear GaSe crystal. Optical properties and applications[J]. Laser Physics, 2009, 19(5): 1092-1104.

[17] Li G F, Huang R J, Huang J G, et al. Impact of sulfur doping on broadband terahertz emission in gallium selenide single crystals via optical rectification[J]. Applied Physics Express, 2021, 14(7): 072004.

[18] Hebling J, Stepanov A G, Almási G, et al. Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts[J]. Applied Physics B, 2004, 78(5): 593-599.

[19] Huber R, Brodschelm A, Tauser F, et al. Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz[J]. Applied Physics Letters, 2000, 76(22): 3191-3193.

[20] 聂佳琪, 赵欢, 张岩. 基于硒化镓晶体差频效应的宽谱太赫兹系统[J]. 激光与光电子学进展, 2020, 57(7): 073001.

    Nie J Q, Zhao H, Zhang Y. Broadband terahertz spectroscopy system based on difference frequency generation in GaSe crystal[J]. Laser & Optoelectronics Progress, 2020, 57(7): 073001.

[21] 李强爽, 孙长明, 范书振, 等. 整形超短激光脉冲与硒化镓晶体光整流效应的可调谐宽带太赫兹波产生[J]. 光学学报, 2023, 43(5): 0519001.

    Li Q S, Sun C M, Fan S Z, et al. Tunable broadband terahertz wave generation based on optical rectification effect of shaped ultrashort laser pulses interacting with GaSe crystal[J]. Acta Optica Sinica, 2023, 43(5): 0519001.

[22] Liu K, Xu J Z, Zhang X C. GaSe crystals for broadband terahertz wave detection[J]. Applied Physics Letters, 2004, 85(6): 863-865.

[23] Kübler C, Huber R, Tübel S, et al. Ultrabroadband detection of multi-terahertz field transients with GaSe electro-optic sensors: approaching the near infrared[J]. Applied Physics Letters, 2004, 85(16): 3360-3362.

[24] Wu X J, Ma J L, Zhang B L, et al. Highly efficient generation of 0.2 mJ terahertz pulses in lithium niobate at room temperature with sub-50 fs chirped Ti∶sapphire laser pulses[J]. Optics Express, 2018, 26(6): 7107-7116.

[25] Blanchard F, Razzari L, Bandulet H C, et al. Generation of 1.5 µJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal[J]. Optics Express, 2007, 15(20): 13212-13220.

[26] Zhao H, Tan Y, Zhang L L, et al. Ultrafast hydrogen bond dynamics of liquid water revealed by terahertz-induced transient birefringence[J]. Light: Science & Applications, 2020, 9: 136.

[27] Cornet M, Degert J, Abraham E, et al. Terahertz Kerr effect in gallium phosphide crystal[J]. Journal of the Optical Society of America B, 2014, 31(7): 1648-1652.

[28] Sajadi M, Wolf M, Kampfrath T. Terahertz-field-induced optical birefringence in common window and substrate materials[J]. Optics Express, 2015, 23(22): 28985-28992.

索鹏, 王晨, 李高芳, 孙凯文, 张文杰, 林贤, 黄志明, 马国宏. 强太赫兹脉冲产生及硒化镓晶体非线性效应研究[J]. 中国激光, 2023, 50(17): 1714018. Peng Suo, Chen Wang, Gaofang Li, Kaiwen Sun, Wenjie Zhang, Xian Lin, Zhiming Huang, Guohong Ma. Intense Terahertz Pulse Generation and Nonlinear Effect of GaSe Crystal[J]. Chinese Journal of Lasers, 2023, 50(17): 1714018.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!