应用激光, 2023, 43 (3): 0127, 网络出版: 2024-01-27  

激光多普勒技术跨介质探测水声信号的研究

Research on Cross-Interface Detection of Underwater Acoustic Signals by Laser Doppler Technology
作者单位
1 天津大学光电信息技术教育部重点实验室, 天津 300072
2 崂山实验室, 山东 青岛 266234
3 电磁空间安全全国重点实验室, 天津 300308
摘要
海洋是丰富的资源宝库, 对海洋资源的开发和利用尤为重要。水空跨介质探测、通信、水下目标确定等技术一直是相关工作者关注的热点, 同时也是技术难题。声波作为一种机械波, 是水中良好的传播载体, 因此通过提取水下声波信息进行水空跨介质探测及通信不失为一种好方法, 但目前仍缺少完整的水下声信号传播模型及试验基础。本文提出一种基于有限元方法的水下声信号产生水面波纹振动的仿真模型, 并运用激光多普勒测振技术对水面波纹进行检测, 通过试验与仿真两种方式均能在水面以上精准得到水下声波信息。在相同水下声信号参数的条件下, 试验与仿真得到的水面波纹振幅大小一致, 验证了激光多普勒测振技术用于获取水下声波信息的可行性及所建立仿真模型的正确性, 为实现水空跨介质探测及通信的突破提供了试验基础及理论依据。
Abstract
The ocean is a treasure trove of rich resources, which is particularly important for the development and utilization of marine resources. Technologies such as water and air cross-medium detection, communication, and underwater target determination have always been the focus of attention of relevant workers with any difficulty. As a kind of mechanical wave, sound is a good propagation carrier in water. Therefore, it is an appropriate method to achieve detection and communication across the water-air interface by extracting underwater acoustic wave information. However, there is still a lack of complete underwater acoustic signal propagation models and experiments. In this case, this paper proposes a simulation model of water surface ripple vibration generated by underwater acoustic signal based on finite element method, which detects water surface ripple with laser Doppler vibration measurement technology. Accurate underwater acoustic information can be obtained by both experiments and simulations. With the conditions of the same underwater acoustic signal parameters, the amplitude of the water surface ripples obtained by the experiment and the simulation is the same, which verifies the feasibility of laser Doppler vibration measurement technology to obtain underwater acoustic wave information and the correctness of the established simulation model. It provides an experimental basis and theoretical basis for realizing breakthroughs in water-space cross-medium detection and communication.
参考文献

[1] ZHAO X W, WANG Y Y, SONG L P, et al. Underwater target imaging based on computational integral imaging[J]. Chinese Journal of Lasers, 2018, 45(1): 0109001.

[2] XIE Z X, LI J P, CHI S K. Underwater binocular measurement method based on line-structured light[J]. Chinese Journal of Lasers, 2020, 47(5): 0504004.

[3] WANG T, HAN B, SHI K, et al. Underwater LED communication based on secondary light distribution with total internal reflection lens[J]. Acta Optica Sinica, 2019, 39(8): 0806001.

[4] 李荣福. 激光声遥感技术[M]. 北京: 国防工业出版社, 2003.LI R F. Laser acoustic remotesensin techniue [M]. Beijing: National Defense Industry Press, 2003.

[5] FARRANT D, BURKE J, DICKINSON L, et al. Opto-acoustic underwater remote sensing (OAURS)-an optical sonar [C]//OCEANS′10 IEEE SYDNEY. Sydney, NSW, Australia; IEEE, 2010: 1-7.

[6] 陈世哲, 张晓琳, 王波, 等. 激光-声联合探测中水表面声波检测方法进展[J]. 海洋技术学报, 2016, 35(3): 1-7.CHEN S Z, ZHANG X L, WANG B, et al. Review on the progress of water surface acoustic wave inspection for the laser-acoustic detection technique[J]. Journal of Ocean Technology, 2016, 35(3): 1-7.

[7] MIAO R C, WANG Y M, MENG F, et al. Optical measurement of the liquid surface wave amplitude with different intensities of underwater acoustic signal[J]. Optics Communications, 2014, 313: 285-289.

[8] 王燕, 方尔正. 激光通量变化法探测水下声信号[J]. 南京理工大学学报(自然科学版), 2009, 33(1): 69-73.WANG Y, FANG E Z. Underwater acoustic detection utilizing laser luminous flux variation method[J]. Journal of Nanjing University of Science and Technology (Natural Science), 2009, 33(1): 69-73.

[9] ANTONELLI L, BLACKMON F. Experimental demonstration of remote, passive acousto-optic sensing[J]. The Journal of the Acoustical Society of America, 2004, 116(6): 3393-3403.

[10] 张骏, 王庆娥, 亓洪兴. 水下声信号激光相干探测的仿真与实验[J]. 红外与毫米波学报, 2016, 35(4): 449-453.ZHANG J, WANG Q E, QI H X. Coherent detection and simulation of the vibration characteristics of underwater acoustic signal[J]. Journal of Infrared and Millimeter Waves, 2016, 35(4): 449-453.

[11] LEE M S, BOURGEOIS B S, HSIEH S T, et al. A laser sensing scheme for detection of underwater acoustic signals[C]//Conference Proceedings′88, IEEE Southeastcon. Knoxville, TN, USA: IEEE, 2002: 253-257.

[12] ANTONELLI L T, WALSH K M, ALBERG A. Laser interrogation of the air-water interface for in-water sound detection: initial feasibility tests[J]. The Journal of the Acoustical Society of America, 1999, 106(4): 2298.

[13] ZHANG X L, MAO H J, KAI L, et al. Amplitude detection of low frequency water surface acoustic wave based on phase demodulation[J]. Infrared and Laser Engineering, 2019, 48(5): 506001.

[14] 张烈山, 张晓琳, 刘刚, 等. 水下声辐射激励水表面声波的特征参数测量[J]. 声学学报, 2019, 44(2): 201-208.ZHANG L S, ZHANG X L, LIU G, et al. Measurement for the characteristic parameters of the water surface acoustic wave induced by underwater acoustic radiation[J]. Acta Acustica, 2019, 44(2): 201-208.

[15] XIANG N, SABATIER J M. Laser Doppler vibrometer-based acoustic landmine detection using the fast M-sequence transform[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 292-294.

[16] 何奇毅, 宗思光. 跨空水介质激光声技术发展分析与思考[J]. 激光与红外, 2019, 49(1): 3-8.HE Q Y, ZONG S G. Analysis and thinking about the development of air and water crossed laser acoustic technology[J]. Laser & Infrared, 2019, 49(1): 3-8.

[17] ALLEN M S, SRACIC M W. A new method for processing impact excited continuous-scan laser Doppler vibrometer measurements[J]. Mechanical Systems and Signal Processing, 2010, 24(3): 721-735.

[18] 吕海宝.激光光电检测[M].长沙: 国防科技大学出版社, 2004: 131-133,142-144,188-192.L H B. Laser photoelectric detection[M]. Changsha: National University of Defense Technology, 2004: 131-133,142-144,188-192.

[19] 汪辉.激光多普勒测振数据处理及其应用研究[D]. 浙江: 浙江大学, 2018: 10-13.WANG H. Research on data processing and application of laser doppler vibration measurement[D]. Zhejiang: Zhangjiang University, 2018: 10-13.

[20] ESTRADA J C, FLORES V H, VARGAS J. A two steps phase-shifting demodulation method using the VU factorization[J]. Optics and Lasers in Engineering, 2021, 147: 106730.

谭琪, 徐航, 杨依光, 陈治良, 盖宇, 张雅婷, 刘严严, 姚建铨. 激光多普勒技术跨介质探测水声信号的研究[J]. 应用激光, 2023, 43(3): 0127. Tan Qi, Xu Hang, Yang Yiguang, Chen Zhiliang, Gai Yu, Zhang Yating, Liu Yanyan, Yao Jianquan. Research on Cross-Interface Detection of Underwater Acoustic Signals by Laser Doppler Technology[J]. APPLIED LASER, 2023, 43(3): 0127.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!