激光与光电子学进展, 2018, 55 (9): 093004, 网络出版: 2018-09-08   

高光谱分类体积的端元提取 下载: 737次

Classification and Volume for Hyperspectral Endmember Extraction
作者单位
陆军工程大学石家庄校区电子与光学工程系, 河北 石家庄 050003
摘要
为求解高光谱图像中各物质的分布及含量, 将高光谱分类引入端元提取, 提出了一种新的端元提取方法。首先利用虚拟维度评估端元数目; 然后引入高光谱分类的思想, 通过K-means聚类算法对高光谱图像进行非监督分类, 对各类物质进行大致分类; 在每类物质中提取出光谱值最大的像元, 用这些像元构成端元候选集; 最后, 依据单形体理论, 将高光谱图像的像元点在高维空间中构成单形体, 体积最大的单形体的顶点即为端元。模拟和真实高光谱数据证明, 此端元提取方法相对于传统方法具有高效、准确的优点。
Abstract
In order to solve the distribution and content of each substance in hyperspectral images, we introduce the hyperspectral classification into the endmember extraction to propose a new endmember extraction method. Firstly, the number of endmembers is determined by the virtual dimension. And the thought of hyperspectral unsupervised classification is performed by K-means clustering algorithm which classifies each pixel into classifications. Then the pixel with the largest spectral value is extracted from each kind of class. According to the theory of simplex, the pixels of hyperspectral image are used to form a simplex in the high-dimensional space, and the vertexes of the largest simplex are the endmembers which are extracted. The simulation and real data have shown that this method of endmember extraction has the advantages of high efficiency and accuracy compared with the traditional method.
参考文献

[1] 张良培, 张立福. 高光谱遥感[M]. 武汉: 武汉大学出版社, 2005: 23-24.

    Zhang L P, Zhang L F. Hyperspectral remote sensing[M].Wuhan: Wuhan University Press, 2005: 23-24.

[2] Plaza A, Martinez P, Perez R, et al. A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(3): 650-663.

[3] Bioucas-Dias J M, Plaza A, Dobigeon N, et al. Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2): 354-379.

[4] Winter M E. N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data[J]. Proceedings of SPIE, 1999, 3753: 266-275.

[5] Nascimento J M P, Dias J M B. Vertex component analysis: a fast algorithm to unmix hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 898-910.

[6] 王丽姣, 厉小润, 赵辽英. 快速实现基于单形体体积生长的端元提取算法[J]. 光学学报, 2014, 34(11): 1128001.

    Wang L J, Li X R, Zhao L Y. Fast implement of the simplex growing algorithm for endmember extraction[J]. Acta Optica Sinica, 2014, 34(11): 1128001.

[7] Boardman J W, Kruse F A, Green R O. Mapping target signatures via partial unmixing of AVIRIS data[C]. Fifth JPL Airborne Earth Science Workshop, 1995: 23-26.

[8] Ambikapathi A M, Chan T H, Ma W K, et al. A robust alternating volume maximization algorithm for endmember extraction in hyperspectral images[C]. Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2010: 1-4.

[9] Iordache M D, Bioucas-Dias J M, Plaza A. Total variation spatial regularization for sparse hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11): 4484-4502.

[10] 李姝颖, 杜山山, 曾朝阳. 基于特征空间显著性的假目标光谱设计[J]. 光学学报, 2017, 37(1): 0128001.

    Li S Y, Du S S, Zeng Z Y. Decoy spectrum design based on feature space significance[J]. Acta Optica Sinica, 2017, 37(1): 0128001.

[11] Geng X, Zhao Y C, Wang F X, et al. A new volume formula for a simplex and its application to endmember extraction for hyperspectral image analysis[J]. International Journal of Remote Sensing, 2010, 31(4): 1027-1035.

[12] Chang C I, Du Q. Estimation of number of spectrally distinct signal sources in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(3): 608-619.

[13] Hartigan J A, Wong M A. AlgorithmAS 136: A K-means clustering algorithm[J]. Applied Statistics, 1979, 28(1): 100-108.

[14] Martin G, Plaza A. Region-based spatial preprocessing for endmember extraction and spectral unmixing[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 745-749.

[15] Miao L D, Qi H R. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(3): 765-777.

[16] Heinz D C, Chang C I. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(3): 529-545.

严阳, 华文深, 崔子浩, 伍锡山, 刘恂. 高光谱分类体积的端元提取[J]. 激光与光电子学进展, 2018, 55(9): 093004. Yan Yang, Hua Wenshen, Cui Zihao, Wu Xishan, Liu Xun. Classification and Volume for Hyperspectral Endmember Extraction[J]. Laser & Optoelectronics Progress, 2018, 55(9): 093004.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!