人工晶体学报, 2023, 52 (2): 315, 网络出版: 2023-03-18  

不同合成方法对LiMgPO4∶Dy发光性能的影响

Effect of Different Synthesis Methods on the Luminescence Properties of LiMgPO4∶Dy
作者单位
新疆大学物理科学与技术学院,乌鲁木齐 830046
摘要
分别采用高温固相法和溶胶凝胶法合成了LiMgPO4和LiMgPO4∶Dy,通过热重-差热热分析仪、X射线衍射仪、傅里叶红外光谱仪、场发射高倍扫描电镜、紫外可见分光光度计和荧光分光光度计研究了不同合成方法对LiMgPO4∶Dy晶体结构、形貌和发光性能的影响。结果表明,溶胶凝胶法的最低合成温度为750 ℃且晶体中几乎不存在其他晶相,而高温固相法在950 ℃合成的晶体中仍然存在少量Mg3(PO4)2晶相;相比于高温固相法,溶胶凝胶法合成的样品形貌比较规则;两种方法合成的样品在可见光区域光吸收能力差,而在紫外区域高温固相法合成的样品光吸收能力明显较高;高温固相法合成的LiMgPO4∶Dy光学带隙范围为3.76~3.93 eV,溶胶凝胶法合成的LiMgPO4∶Dy光学带隙范围为3.85~3.94 eV,合成方法对样品的光学带隙影响较小。LiMgPO4∶Dy的最佳激发波长为350 nm,最强发射峰位于579 nm处,相比于高温固相法,溶胶凝胶法合成样品的发光强度更好。
Abstract
LiMgPO4 and LiMgPO4∶Dy were synthesized by high-temperature solid-state method and sol-gel method. The effects of different synthesis methods on crystal structure, morphology and luminescence properties of LiMgPO4∶Dy were studied using thermogravimetry-differential thermal analyzor, X-ray diffractometer, Fourier transform infrared spectrometer, scanning electron microscope, ultraviolet-visible spectrophotometer and fluorospectro-photometer. The results show that the lowest synthesis temperature by sol-gel method is 750 ℃ and no other crystal phases are found in the crystal, while a small amount of Mg3(PO4)2 crystal phases are found in the sample synthesized by high-temperature solid-state method at 950 ℃. The morphology of the samples synthesized by sol-gel method is better than that synthesized by high-temperature solid-state method. Samples synthesized by both methods show low absorbance in the visible region. In the ultraviolet region, the absorbance of the sample synthesized by high-temperature solid-state method is higher than that synthesized by sol-gel method. The optical band gap range of LiMgPO4∶Dy synthesized by high-temperature solid-state method is 3.76~3.93 eV, and that of LiMgPO4∶Dy synthesized by sol-gel method is 3.85~3.94 eV. The synthesis method has little effect on the optical band gap of the sample. The optimal excitation wavelength of LiMgPO4∶Dy is 350 nm, and the strongest emission wavelength is 579 nm. The luminescence intensity of the samples synthesized by sol-gel method is better than that synthesized by high-temperature solid-state method.
参考文献

[1] KELLERMAN D G, KALINKIN M O, AKULOV D A, et al. On the energy transfer in LiMgPO4 doped with rare-earth elements[J]. Journal of Materials Chemistry C, 2021, 9(34): 11272-11283.

[2] SRONSRI C, SITTIPOL W, U-YEN K. Luminescence characterization of Mn-doped LiMgPO4 synthesized using different precursors[J]. Journal of Solid State Chemistry, 2021, 297: 122083.

[3] GUO J Y, ZHAO L, TANG Q, et al. Spectral study on energy transfer of the LiMgPO4 phosphor doped with Tm3+ and Tb3+[J]. Journal of Luminescence, 2020, 228: 117613.

[4] KUMAR P, DHABEKAR B, SHARMA S D, et al. Relative energy response of indigenously developed optically stimulated luminescence dosimeters Al2 O3∶C, LiMgPO4∶B and LiCaAlF6∶Eu, Y in therapeutic photon and electron beams[J]. Luminescence: the Journal of Biological and Chemical Luminescence, 2020, 35(8): 1217-1222.

[5] KELLERMAN D G, MEDVEDEVA N I, KALINKIN M O, et al. Theoretical and experimental evidences of defects in LiMgPO4[J]. Journal of Alloys and Compounds, 2018, 766: 626-636.

[6] 阙慧颖, 陈朝阳, 孔熙瑞, 等. LiMgPO4∶Tb光致发光材料的制备及剂量学性能研究[J]. 郑州大学学报(工学版), 2019, 40(6): 23-26.

[7] MENON S N, KADAM S Y, KOUL D K. Thermal quenching studies in LiMgPO4 based OSL phosphors[J]. Journal of Luminescence, 2019, 216: 116716.

[8] 郭竞渊, 唐 强, 兰婷婷, 等. LiMgPO4∶Tm, Tb磷光体的热释光特性[J]. 中国稀土学报, 2015, 33(4): 404-408.

[9] MARCZEWSKA B, SAS-BIENIARZ A, BILSKI P, et al. OSL and RL of LiMgPO4 crystals doped with rare earth elements[J]. Radiation Measurements, 2019, 129: 106205.

[10] KELLERMAN D G, KALINKIN M O, TYUTYUNNIK A P, et al. An insight into indium effect on the crystal structure and thermoluminescence of LiMgPO4: combined experiment and ab initio calculations[J]. Journal of Alloys and Compounds, 2020, 846: 156242.

[11] KALINKIN M, ABASHEV R, SURDO A, et al. Influence of defects on thermoluminescence in pristine and doped LiMgPO4[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 2020, 465: 1-5.

[12] SAS-BIENIARZ A, MARCZEWSKA B, KOSOWSKI M, et al. TL, OSL and RL emission spectra of RE-doped LiMgPO4 crystals[J]. Journal of Luminescence, 2020, 218: 116839.

[13] GOI A, LEZAMA L, BARBERIS G E, et al. Magnetic properties of the LiMPO4 (M=Co, Ni) compounds[J]. Journal of Magnetism and Magnetic Materials, 1996, 164(1/2): 251-255.

[14] ZHANG S Y, HUANG Y L, SEO H J. The spectroscopic properties and structural occupation of Eu3+ sites in LiMgPO4 phosphor[J]. Journal of the Electrochemical Society, 2010, 157(5): J186.

[15] DHABEKAR B, MENON S N, ALAGU RAJA E, et al. LiMgPO4∶Tb, B-A new sensitive OSL phosphor for dosimetry[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2011, 269(16): 1844-1848.

[16] TANG H M, LIN L T, ZHANG C X, et al. High-sensitivity and wide-linear-range thermoluminescence dosimeter LiMgPO4∶Tm, Tb, B for detecting high-dose radiation[J]. Inorganic Chemistry, 2019, 58(15): 9698-9705.

[17] KESKIN , TREMI瘙塁 M, KAT M , et al. Detailed luminescence (RL, PL, CL, TL) behaviors of Tb3+ and Dy3+ doped LiMgPO4 synthesized by sol-gel method[J]. Journal of Luminescence, 2020, 225: 117276.

[18] PALAN C B, BAJAJ N S, SONI A, et al. Synthesis and luminescence properties of Tb3+-doped LiMgPO4 phosphor[J]. Bulletin of Materials Science, 2016, 39(5): 1157-1163.

[19] AKHSASSI B, BOUDDOUCH A, NACIRI Y, et al. Enhanced photocatalytic activity of Zn3(PO4)2/ZnO composite semiconductor prepared by different methods[J]. Chemical Physics Letters, 2021, 783: 139046.

[20] MAHAJAN R, PRAKASH R, KUMAR S, et al. Surface and luminescent properties of Mg3(PO4)2∶Dy3+ phosphors[J]. Optik, 2021, 225: 165717.

[21] SRONSRI C, BOONCHOM B. Synthesis, characterization, vibrational spectroscopy, and factor group analysis of partially metal-doped phosphate materials[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 194: 230-240.

[22] ISASI J, ALCARAZ L, ARVALO P, et al. Synthesis and study of (Ca/Ba)0.45Eu0.05Zr2(PO4)3 nanophosphors and (Ca/Ba)0.45Eu0.05Zr2(PO4)3@SiO2 nanostructures with blue-green emission[J]. Journal of Luminescence, 2018, 204: 633-641.

[23] ZHONG J P, LIANG H B, HAN B, et al. Intensive emission of Dy3+ in NaGd(PO3)4 for Hg-free lamps application[J]. Optics Express, 2008, 16(10): 7508-7515.

尹子龙, 冯光文, 陈恒雷. 不同合成方法对LiMgPO4∶Dy发光性能的影响[J]. 人工晶体学报, 2023, 52(2): 315. YIN Zilong, FENG Guangwen, CHEN Henglei. Effect of Different Synthesis Methods on the Luminescence Properties of LiMgPO4∶Dy[J]. Journal of Synthetic Crystals, 2023, 52(2): 315.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!