应用激光, 2023, 43 (3): 0118, 网络出版: 2024-01-27  

中频波前均方根计算的空域预处理方法研究

Study on Spatial Domain Preprocessing Method for Computation of Root Mean Squareof Mid-Spatial-Frequency Wavefront
作者单位
1 东华大学理学院, 上海 201620
2 上海乾曜光学科技有限公司, 上海 201806
摘要
中频波前均方根(PSD1)是用来评价光学元件中频段波前质量的关键参数, 在对其进行数值计算之前, 需要对波前数据进行频率域滤波。滤波后的数据易导致待测区域内、外的数据截断, 引入较大的边缘高频误差与吉布斯噪声, 从而严重影响了计算准确度。为了减小数据截断带来的影响, 通过对边缘截断的数据做趋优填充, 减少截断区域内外的空间频率突变。通过对现有的空域预处理方法进行对比, 提出了一种四向扩展平均算法。经试验验证, 所提出的方法可以较好地还原光学元件的中频段面形, 显著提高PSD1测量准确度, 试验表明所提出的方法较标准值的误差平均值小于5%。
Abstract
The root mean square of mid-spatial-frequency wavefront (PSD1) is a key parameter used to evaluate the quality of mid-spatial-frequency wavefront of optical components. Before numerical calculation, the wavefront data should be filtered in frequency domain. Because the filtered data is easy to lead to data truncation in and outside the region to be measured, large edge high-frequency error and Gibbs noise are introduced, which seriously affects the accuracy of calculation. In order to reduce the impact of truncation, this paper optimally fills the truncated data to reduce the spatial frequency mutation inside and outside the truncated region. A four-way extended average algorithm is proposed by comparing the existing spatial preprocessing methods. Experimental results show that the proposed method can well restore the mid-frequency segment surface shape of optical elements and significantly improve the PSD1 measurement accuracy, and the mean error of the proposed method is less than 5% compared with the standard value.
参考文献

[1] LAWSON JANICE K, ROBERT W C, MANES KENNETH R, et al. Specification of optical components using the power spectral density function[J]. 1995, 2536: 38-50.

[2] 戴斌飞. 面形精度评价方法研究[D]. 苏州: 苏州大学, 2005.DAI B F. Study on methods for assessing precision of optical surface[D].Suzhou: Soochow University, 2005.

[3] PAISNER J A, HOGAN W J. Progress in the title I design of the national ignition facility[J]. Fusion Technology, 1996, 30(3P2A): 475-485.

[4] 杨瑞峰, 吴耀, 郭晨霞, 等. 用于形貌测量的光纤传感系统研究[J]. 应用激光, 2019, 39(1): 124-129.YANG R F, WU Y, GUO C X, et al. Optical fiber sensing system for morphology measurement[J]. Applied Laser, 2019, 39(1): 124-129.

[5] PAISNER J A, MURRAY J R. The national ignition facility for inertial confinement fusion[C]//17th IEEE/NPSS Symposium Fusion Engineering. San Diego, CA, USA. New York: IEEE, 2002: 57-62.

[6] 张国伟. 高功率激光装置光学元件PSD1检测方法的研究[D]. 南京: 南京理工大学, 2013.ZHANG G W.Research on detection method of optical element PSD1 in high power laser device[D].Nanjing: Nanjing University of Science and Technology, 2013.

[7] 刘红婕, 景峰, 左言磊, 等. 激光波前功率谱密度与焦斑旁瓣的关系[J]. 中国激光, 2006, 33(4): 504-508.LIU H J, JING F, ZUO Y L, et al. Relation between wavefront power spectral density and wings of focal spot[J]. Chinese Journal of Lasers, 2006,33(4): 504-508.

[8] 戴亚平, 谢虎, 李银柱, 等. 功率谱密度传输性质的理论分析和数值模拟[J]. 中国激光, 2001, 28(4): 337-342.DAI Y P, XIE H, LI Y Z, et al. Propagation of power spectral density:Theoretical and numerical analysis[J]. Chinese Journal of Lasers, 2001, 28(4): 337-342.

[9] 高志山. 光学表面轮郭功率谱密度对象质的影响及干涉测试研究[D]. 南京: 南京理工大学, 1999.GAO Z S.Study on the influence of power spectral density of optical surface wheel on object quality and interference test[D].Nanjing: Nanjing University of Science and Technology, 1999.

[10] AIKENS D M, WOLFE C R, LAWSON J K. Use of power spectral density (PSD) functions in specifying optics for the national ignition facility[C]//Proc SPIE 2576, International Conference on Optical Fabrication and Testing, 1995, 2576: 281-292.

[11] ELSON J M, BENNETT J M. Calculation of the power spectral density from surface profile data[J]. Applied Optics, 1995, 34(1): 201-208.

[12] 沈卫星, 徐德衍. 强激光光学元件表面功率谱密度函数估计[J]. 强激光与粒子束, 2000, 12(4): 392-396.SHEN W X, XU D Y. Power spectral density function estimate in high power laser optical element surface[J]. High Power Laser & Particle Beams, 2000,12(4): 392-396.

[13] SCHNLEBER M, CEDILNIK G, TIZIANI H J. Joint transform correlator subtracting a modified Fourier spectrum[J]. Applied Optics, 1995, 34(32): 7532-7537.

[14] 柴立群, 许乔, 邓燕, 等. 强激光系统波前功率谱密度的数值计算研究[J]. 光学技术, 2005, 31(4): 577-579.CHAI L Q, XU Q, DENG Y, et al. Study on numerical computation of wavefront power spectrum density in high power laser system[J]. Optical Technique, 2005,31(4): 577-579.

[15] 胡广书. 数字信号处理: 理论、算法与实现[M]. 北京: 清华大学出版社, 1997.HU G S.Digital signal processing: Theory, algorithm and implementation[M]. Beijing: Tsinghua University Press, 1997.

[16] 任寰,刘旭,柴立群等. 光学元件波前功率谱密度的计算方法探讨[C]//第四届全国信息光学与光子器件学术会议论文集, 上海: 中国科学院上海光学精密机械研究所, 中国激光杂志社, 2012: 275.REN H, LIU X, CHAI L Q, et al. Discussion of numerical method for the power spectral density[C]//Proceedings of the 4th National Conference on Information Optics and Photonic Devices, Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Chinese Journal of Lasers, 2012: 275.

胡豪威, 翟天保, 魏纯可, 汤信, 陈宇, 钟平. 中频波前均方根计算的空域预处理方法研究[J]. 应用激光, 2023, 43(3): 0118. Hu Haowei, Zhai Tianbao, Wei Chunke, Tang Xin, Chen Yu, Zhong Ping. Study on Spatial Domain Preprocessing Method for Computation of Root Mean Squareof Mid-Spatial-Frequency Wavefront[J]. APPLIED LASER, 2023, 43(3): 0118.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!